File size: 9,519 Bytes
48bb68b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
# pip install pinecone[grpc]
#from pinecone import Pinecone
from pinecone.grpc import PineconeGRPC as Pinecone
import os
import pandas as pd
import numpy as np
from pinecone import ServerlessSpec
from pinecone_text.sparse import BM25Encoder
## ID generation
from sqids import Sqids
sqids = Sqids()
#######
#import protobuf_module_pb2
#pc = Pinecone("5faec954-a6c5-4af5-a577-89dbd2e4e5b0")
##### EMBEDDINGS AND ENCODINGS
"""
## Embed in the inference API
df = pd.read_csv('data/Indicator_Test.csv')
pc = Pinecone("5faec954-a6c5-4af5-a577-89dbd2e4e5b0")
model = "multilingual-e5-large"
embeddings = bulk_embed(pc, model, df[1:96])
"""
def bulk_embed(pc, model, data, textcol='text'):
embeddings = pc.inference.embed(
model,
inputs=[x for x in data[textcol]],
parameters={
"input_type": "passage"
}
)
return embeddings
def join_chunked_results(embeddings):
result = []
for chunk in embeddings:
for emblist in chunk.data:
result.append(emblist["values"])
return result
"""
## Chunk and embed in the inference API
df = pd.read_csv('data/climate_test.csv')
pc = Pinecone("5faec954-a6c5-4af5-a577-89dbd2e4e5b0")
model = "multilingual-e5-large"
embeddings = chunk_and_embed(pc, model, df)
## Upgrade this function to return a dataframe with the Embeddings as a new column
"""
def chunk_and_embed(pc, model, data, chunk_size=96, textcol='text'):
embeddings = []
for i in range(0, len(data), chunk_size):
chunk = data[i:min(i + chunk_size, len(data))]
embeddings.append(bulk_embed(pc, model, chunk, textcol))
chunked_embeddings = join_chunked_results(embeddings)
data['Embeddings'] = chunked_embeddings
data['id'] = [sqids.encode([i, i+1, i+2]) for i in range(len(data))]
return data
"""
## Query the embeddings
query = "What is the impact of climate change on the economy?"
embeddings = query_embed(pc, model, query)
"""
def query_embed(pc, model, query):
embeddings = pc.inference.embed(
model,
inputs=query,
parameters={
"input_type": "query"
}
)
return embeddings[0]['values']
"""
### Sparse vector encoding
- write a function to embed
from pinecone_text.sparse import BM25Encoder
corpus = ["The quick brown fox jumps over the lazy dog",
"The lazy dog is brown",
"The fox is brown"]
# Initialize BM25 and fit the corpus.
bm25 = BM25Encoder()
#bm25.fit(corpus)
#bm25 = BM25Encoder.default()
doc_sparse_vector = bm25.encode_documents("The brown fox is quick")
vector, bm25 = encode_documents(corpus)
"""
def encode_documents(corpus):
bm25 = BM25Encoder()
bm25.fit(corpus)
doc_sparse_vector = bm25.encode_documents(corpus)
return doc_sparse_vector, bm25
def encode_query(bm25, query):
query_sparse_vector = bm25.encode_queries(query)
return query_sparse_vector
"""
## Generate format of sparse-dense vectors
# Example usage
df = pd.read_csv('data/Indicator_Test.csv')
df = df.head(3)
newdf = create_sparse_embeds(df)
newdf['metadata'] = newdf.metadata.to_list()
"""
def create_sparse_embeds(pc, df, textcol='text', idcol='id', model="multilingual-e5-large"):
endocs, bm25 = encode_documents(df[textcol].to_list())
chunk_and_embed(pc, model, df) # this is an in-place operation
# rename Embeddings to values
df.rename(columns={'Embeddings': 'values'}, inplace=True)
df['sparse_values'] = [x['values'] for x in endocs]
df['indices'] = [x['indices'] for x in endocs]
df['metadata'] = df.drop(columns=[idcol, 'values', 'indices', 'sparse_values']).to_dict(orient='records')
df = df[[idcol, 'values', 'metadata', 'indices', 'sparse_values']]
return bm25, df
"""
## Generate format of sparse-dense vectors
# Example usage
data = {
'id': ['vec1', 'vec2'],
'values': [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4]],
'metadata': [{'genre': 'drama', 'text': 'this'}, {'genre': 'action'}],
'sparse_indices': [[10, 45, 16], [12, 34, 56]],
'sparse_values': [[0.5, 0.5, 0.2], [0.3, 0.4, 0.1]]
}
df = pd.DataFrame(data)
sparse_dense_dicts = create_sparse_dense_dict(df)
vecs = create_sparse_dense_vectors_from_df(df)
index.upsert(vecs, namespace="example-namespace")
# Example usage
df = pd.read_csv('data/Indicator_Test.csv')
df = df.head(3)
newdf = create_sparse_embeds(df)
metadata = df[['text', 'label']].to_dict(orient='records')
newdf['metadata'] = metadata
vecs = create_sparse_dense_dict(newdf)
index.upsert(vecs, namespace="example-namespace")
"""
def create_sparse_dense_dict(df, id_col='id', values_col='values', metadata_col='metadata', sparse_indices_col='indices', sparse_values_col='sparse_values'):
result = []
for _, row in df.iterrows():
vector_dict = {
'id': row[id_col],
'values': row[values_col],
'metadata': row[metadata_col],
'sparse_values': {
'indices': row[sparse_indices_col],
'values': row[sparse_values_col]
}
}
result.append(vector_dict)
return result
############ UPSERTING DATA
def create_index(pc, name, dimension, metric, cloud, region):
pc.create_index(
name=name,
dimension=dimension,
metric=metric,
spec=ServerlessSpec(
cloud=cloud,
region=region
)
)
#pc.delete_index("example-index")
#index = pc.Index("test-index")
"""
## Create vectors from a DataFrame to be uploaded to Pinecone
import pandas as pd
# Create a sample DataFrame
data = {
'Embeddings': [
[0.1, 0.2, 0.3, 0.4],
[0.2, 0.3, 0.4, 0.5]
],
'id': ['vec1', 'vec2'],
'genre': ['drama', 'action']
}
df = pd.DataFrame(data)
vecs = create_vectors_from_df(df)
# Upload the vectors to Pinecone
index.upsert(
vectors=vecs,
namespace="example-namespace"
)
"""
def create_vectors_from_df(df):
vectors = []
for _, row in df.iterrows():
vectors.append((row['id'], row['Embeddings'], row.drop(['Embeddings', 'id']).to_dict()))
return vectors
def chunk_upload_vectors(index, vectors, namespace="example-namespace", chunk_size=1000):
for i in range(0, len(vectors), chunk_size):
chunk = vectors[i:min(i + chunk_size, len(vectors))]
index.upsert(
vectors=chunk,
namespace=namespace
)
"""
## Working Example 2
df = pd.read_csv('data/Indicator_Test.csv')
dfe = DataLoader.chunk_and_embed(pc, model, df)
# Keep only text, embeddings, id
dfmin = dfe[['text', 'Embeddings', 'id', 'label']]
DataLoader.chunk_df_and_upsert(index, dfmin, namespace="indicator-test-namespace", chunk_size=96)
"""
def chunk_df_and_upsert(index, df, namespace="new-namespace", chunk_size=1000):
vectors = create_vectors_from_df(df)
chunk_upload_vectors(index, vectors, namespace, chunk_size)
#### QUERYING DATA
"""
namespace = "namespace"
vector = [0.1, 0.2, 0.3, 0.4]
top_k = 3
include_values = True
"""
def query_data(index, namespace, vector, top_k=3, include_values=True):
out = index.query(
namespace=namespace,
vector=vector.tolist(),
top_k=top_k,
include_values=include_values
)
return out
"""
Example:
"""
def query_data_with_sparse(index, namespace, vector, sparse_vector, top_k=5, include_values=True, include_metadata=True):
out = index.query(
namespace=namespace,
vector=vector,
sparse_vector=sparse_vector,
top_k=top_k,
include_metadata=include_metadata,
include_values=include_values
)
return out
# create sparse vector with zero weighting
def empty_sparse_vector():
return {
'indices': [1],
'values': [0.0]
}
"""
pc = Pinecone("5faec954-a6c5-4af5-a577-89dbd2e4e5b0")
index = pc.Index("test-index")
namespace = "test-namespace"
vector = np.random.rand(1024)
top_k = 3
include_values = True
filter={
"label": {"$lt": 2}
}
query_data_with_filter(index, namespace, vector, top_k, include_values, filter)
"""
def query_data_with_filter(index, namespace, vector, top_k=3, include_values=True, filter=None):
out = index.query(
namespace=namespace,
vector=vector.tolist(),
top_k=top_k,
include_values=include_values,
filter=filter
)
return out
"""
pc = Pinecone("5faec954-a6c5-4af5-a577-89dbd2e4e5b0")
ids = ["UkfgLgeYW9wo", "GkkzUYYOcooB"]
indexname = "ostreacultura-v1"
namespace = "cards-data"
index = pc.Index(indexname)
DL.fetch_data(index, ids, namespace)
"""
def fetch_data(index, ids, namespace):
out = index.fetch(ids=ids, namespace=namespace)
return out
def get_all_ids_from_namespace(index, namespace):
ids = index.list(namespace=namespace)
return ids
"""
## Hybrid search weighting - Alpa is equal to the weight of the dense vector
dense = [0.1, 0.2, 0.3, 0.4]
sparse_vector={
'indices': [10, 45, 16],
'values': [0.5, 0.5, 0.2]
}
dense, sparse = hybrid_score_norm(dense, sparse, alpha=1.0)
"""
def hybrid_score_norm(dense, sparse, alpha: float):
"""Hybrid score using a convex combination
alpha * dense + (1 - alpha) * sparse
Args:
dense: Array of floats representing
sparse: a dict of `indices` and `values`
alpha: scale between 0 and 1
"""
if alpha < 0 or alpha > 1:
raise ValueError("Alpha must be between 0 and 1")
hs = {
'indices': sparse['indices'],
'values': [v * (1 - alpha) for v in sparse['values']]
}
return [v * alpha for v in dense], hs
############# |