File size: 9,519 Bytes
48bb68b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# pip install pinecone[grpc]
#from pinecone import Pinecone
from pinecone.grpc import PineconeGRPC as Pinecone
import os
import pandas as pd
import numpy as np
from pinecone import ServerlessSpec
from pinecone_text.sparse import BM25Encoder

## ID generation 
from sqids import Sqids
sqids = Sqids()
#######
#import protobuf_module_pb2
#pc = Pinecone("5faec954-a6c5-4af5-a577-89dbd2e4e5b0")

##### EMBEDDINGS AND ENCODINGS 
"""
## Embed in the inference API 
df = pd.read_csv('data/Indicator_Test.csv')
pc = Pinecone("5faec954-a6c5-4af5-a577-89dbd2e4e5b0")
model = "multilingual-e5-large"
embeddings = bulk_embed(pc, model, df[1:96])

"""
def bulk_embed(pc, model, data, textcol='text'):
    embeddings = pc.inference.embed(
        model,
        inputs=[x for x in data[textcol]],
        parameters={
        "input_type": "passage"
        }
    )
    return embeddings


def join_chunked_results(embeddings):
    result = []
    for chunk in embeddings:
        for emblist in chunk.data:
            result.append(emblist["values"])
    return result

"""
## Chunk and embed in the inference API
df = pd.read_csv('data/climate_test.csv')
pc = Pinecone("5faec954-a6c5-4af5-a577-89dbd2e4e5b0")
model = "multilingual-e5-large"
embeddings = chunk_and_embed(pc, model, df)
## Upgrade this function to return a dataframe with the Embeddings as a new column

"""
def chunk_and_embed(pc, model, data, chunk_size=96, textcol='text'):
    embeddings = []
    for i in range(0, len(data), chunk_size):
        chunk = data[i:min(i + chunk_size, len(data))]
        embeddings.append(bulk_embed(pc, model, chunk, textcol))
    chunked_embeddings = join_chunked_results(embeddings)
    data['Embeddings'] = chunked_embeddings
    data['id'] = [sqids.encode([i, i+1, i+2]) for i in range(len(data))]
    return data

"""
## Query the embeddings
query = "What is the impact of climate change on the economy?"
embeddings = query_embed(pc, model, query)
"""
def query_embed(pc, model, query):
    embeddings = pc.inference.embed(
        model,
        inputs=query,
        parameters={
        "input_type": "query"
        }
    )
    return embeddings[0]['values']

"""
### Sparse vector encoding 
- write a function to embed 
from pinecone_text.sparse import BM25Encoder

corpus = ["The quick brown fox jumps over the lazy dog",
          "The lazy dog is brown",
          "The fox is brown"]

# Initialize BM25 and fit the corpus.
bm25 = BM25Encoder()
#bm25.fit(corpus)
#bm25 = BM25Encoder.default()
doc_sparse_vector = bm25.encode_documents("The brown fox is quick")

vector, bm25 = encode_documents(corpus)
"""
def encode_documents(corpus):
    bm25 = BM25Encoder()
    bm25.fit(corpus)
    doc_sparse_vector = bm25.encode_documents(corpus)
    return doc_sparse_vector, bm25

def encode_query(bm25, query):
    query_sparse_vector = bm25.encode_queries(query)
    return query_sparse_vector

"""
## Generate format of sparse-dense vectors
# Example usage
df = pd.read_csv('data/Indicator_Test.csv')
df = df.head(3)
newdf = create_sparse_embeds(df)
newdf['metadata'] = newdf.metadata.to_list()

"""
def create_sparse_embeds(pc, df, textcol='text', idcol='id', model="multilingual-e5-large"):
    endocs, bm25 = encode_documents(df[textcol].to_list())
    chunk_and_embed(pc, model, df) # this is an in-place operation
    # rename Embeddings to values
    df.rename(columns={'Embeddings': 'values'}, inplace=True)
    df['sparse_values'] = [x['values'] for x in endocs]
    df['indices'] = [x['indices'] for x in endocs]
    df['metadata'] = df.drop(columns=[idcol, 'values', 'indices', 'sparse_values']).to_dict(orient='records')
    df = df[[idcol, 'values', 'metadata', 'indices', 'sparse_values']]
    return bm25, df

"""
## Generate format of sparse-dense vectors
# Example usage
data = {
    'id': ['vec1', 'vec2'],
    'values': [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4]],
    'metadata': [{'genre': 'drama', 'text': 'this'}, {'genre': 'action'}],
    'sparse_indices': [[10, 45, 16], [12, 34, 56]],
    'sparse_values': [[0.5, 0.5, 0.2], [0.3, 0.4, 0.1]]
}

df = pd.DataFrame(data)
sparse_dense_dicts = create_sparse_dense_dict(df)
vecs = create_sparse_dense_vectors_from_df(df)
index.upsert(vecs, namespace="example-namespace")


# Example usage
df = pd.read_csv('data/Indicator_Test.csv')
df = df.head(3)
newdf = create_sparse_embeds(df)
metadata = df[['text', 'label']].to_dict(orient='records')
newdf['metadata'] = metadata
vecs = create_sparse_dense_dict(newdf)
index.upsert(vecs, namespace="example-namespace")

"""
def create_sparse_dense_dict(df, id_col='id', values_col='values', metadata_col='metadata', sparse_indices_col='indices', sparse_values_col='sparse_values'):
    result = []
    
    for _, row in df.iterrows():
        vector_dict = {
            'id': row[id_col],
            'values': row[values_col],
            'metadata': row[metadata_col],
            'sparse_values': {
                'indices': row[sparse_indices_col],
                'values': row[sparse_values_col]
            }
        }
        result.append(vector_dict)
    
    return result


############ UPSERTING DATA 

def create_index(pc, name, dimension, metric, cloud, region):
    pc.create_index(
        name=name,
        dimension=dimension,
        metric=metric,
        spec=ServerlessSpec(
            cloud=cloud,
            region=region
        )
    )

#pc.delete_index("example-index")

#index = pc.Index("test-index")

"""
## Create vectors from a DataFrame to be uploaded to Pinecone
import pandas as pd

# Create a sample DataFrame
data = {
    'Embeddings': [
        [0.1, 0.2, 0.3, 0.4],
        [0.2, 0.3, 0.4, 0.5]
    ],
    'id': ['vec1', 'vec2'],
    'genre': ['drama', 'action']
}
df = pd.DataFrame(data)

vecs = create_vectors_from_df(df)

# Upload the vectors to Pinecone
index.upsert(
    vectors=vecs,
    namespace="example-namespace"
)
"""
def create_vectors_from_df(df):
    vectors = []
    for _, row in df.iterrows():
        vectors.append((row['id'], row['Embeddings'], row.drop(['Embeddings', 'id']).to_dict()))
    return vectors

def chunk_upload_vectors(index, vectors, namespace="example-namespace", chunk_size=1000):
    for i in range(0, len(vectors), chunk_size):
        chunk = vectors[i:min(i + chunk_size, len(vectors))]
        index.upsert(
            vectors=chunk,
            namespace=namespace
        )

"""
## Working Example 2

df = pd.read_csv('data/Indicator_Test.csv')
dfe = DataLoader.chunk_and_embed(pc, model, df)
# Keep only text, embeddings, id
dfmin = dfe[['text', 'Embeddings', 'id', 'label']]
DataLoader.chunk_df_and_upsert(index, dfmin, namespace="indicator-test-namespace", chunk_size=96)

"""
def chunk_df_and_upsert(index, df, namespace="new-namespace", chunk_size=1000):
    vectors = create_vectors_from_df(df)
    chunk_upload_vectors(index, vectors, namespace, chunk_size)

#### QUERYING DATA
"""
namespace = "namespace"
vector = [0.1, 0.2, 0.3, 0.4]
top_k = 3
include_values = True
"""
def query_data(index, namespace, vector, top_k=3, include_values=True):
    out = index.query(
    namespace=namespace,
    vector=vector.tolist(),
    top_k=top_k,
    include_values=include_values
    )
    return out

"""
Example: 

"""
def query_data_with_sparse(index, namespace, vector, sparse_vector, top_k=5, include_values=True, include_metadata=True):
    out = index.query(
    namespace=namespace,
    vector=vector,
    sparse_vector=sparse_vector,
    top_k=top_k,
    include_metadata=include_metadata,
    include_values=include_values
    )
    return out

# create sparse vector with zero weighting 
def empty_sparse_vector():
    return {
        'indices': [1],
        'values': [0.0]
    }


"""
pc = Pinecone("5faec954-a6c5-4af5-a577-89dbd2e4e5b0")
index = pc.Index("test-index")
namespace = "test-namespace"
vector = np.random.rand(1024)
top_k = 3
include_values = True
filter={
        "label": {"$lt": 2}
    }
query_data_with_filter(index, namespace, vector, top_k, include_values, filter)
"""
def query_data_with_filter(index, namespace, vector, top_k=3, include_values=True, filter=None):
    out = index.query(
    namespace=namespace,
    vector=vector.tolist(),
    top_k=top_k,
    include_values=include_values,
    filter=filter
    )
    return out

"""
pc = Pinecone("5faec954-a6c5-4af5-a577-89dbd2e4e5b0")
ids = ["UkfgLgeYW9wo", "GkkzUYYOcooB"]
indexname = "ostreacultura-v1"
namespace = "cards-data"
index = pc.Index(indexname)
DL.fetch_data(index, ids, namespace)

"""
def fetch_data(index, ids, namespace):
    out = index.fetch(ids=ids, namespace=namespace)
    return out 


def get_all_ids_from_namespace(index, namespace):
    ids = index.list(namespace=namespace)
    return ids

"""
## Hybrid search weighting - Alpa is equal to the weight of the dense vector 
dense = [0.1, 0.2, 0.3, 0.4]
sparse_vector={
        'indices': [10, 45, 16],
        'values':  [0.5, 0.5, 0.2]
    }
dense, sparse = hybrid_score_norm(dense, sparse, alpha=1.0)
"""
def hybrid_score_norm(dense, sparse, alpha: float):
    """Hybrid score using a convex combination
    
    alpha * dense + (1 - alpha) * sparse
    
    Args:
        dense: Array of floats representing
        sparse: a dict of `indices` and `values`
        alpha: scale between 0 and 1
    """
    if alpha < 0 or alpha > 1:
        raise ValueError("Alpha must be between 0 and 1")
    hs = {
        'indices': sparse['indices'],
        'values': [v * (1 - alpha) for v in sparse['values']]
    }
    return [v * alpha for v in dense], hs

#############