Spaces:
Sleeping
Sleeping
import OstreaCultura as OC | |
using DataFrames, XLSX, CSV | |
df = DataFrame(XLSX.readtable("data/Misinformation Library with counterclaims.xlsx", "Climate")) | |
CSV.write("data/Climate Misinformation Library with counterclaims.csv", df) | |
claims = OC.DataLoader.pd.read_csv("data/Climate Misinformation Library with counterclaims.csv") | |
indexname = "ostreacultura-v1" | |
namespace = "cards-data" | |
claim = claims.Claims[1] | |
counterclaim = claims.Counterclaims[1] | |
threshold = .8 | |
top_k = 100 # top_k for the initial query | |
#OC.query_claims(claims.Claims[1], claims.Counterclaims[1], indexname, namespace) | |
# Write a loop to query all claims, then assign the claim to the top k values | |
classified = DataFrame() | |
for i in 1:size(claims)[1] | |
result = OC.query_claims(string(claims.Claims[i]), string(claims.Counterclaims[i]), indexname, namespace; top_k=100, include_values=false) | |
if nrow(result) == 0 | |
println("No results found for claim: ", claims.Claims[i]) | |
continue | |
else | |
result.assigned_claim .= claims.Claims[i] | |
classified = vcat(classified, result) | |
end | |
end | |
# Write the classified data to a csv file | |
using CSV | |
CSV.write("data/cards_top100_results.csv", classified) | |
## |