import OstreaCultura as OC using DataFrames, XLSX, CSV df = DataFrame(XLSX.readtable("data/Misinformation Library with counterclaims.xlsx", "Climate")) CSV.write("data/Climate Misinformation Library with counterclaims.csv", df) claims = OC.DataLoader.pd.read_csv("data/Climate Misinformation Library with counterclaims.csv") indexname = "ostreacultura-v1" namespace = "cards-data" claim = claims.Claims[1] counterclaim = claims.Counterclaims[1] threshold = .8 top_k = 100 # top_k for the initial query #OC.query_claims(claims.Claims[1], claims.Counterclaims[1], indexname, namespace) # Write a loop to query all claims, then assign the claim to the top k values classified = DataFrame() for i in 1:size(claims)[1] result = OC.query_claims(string(claims.Claims[i]), string(claims.Counterclaims[i]), indexname, namespace; top_k=100, include_values=false) if nrow(result) == 0 println("No results found for claim: ", claims.Claims[i]) continue else result.assigned_claim .= claims.Claims[i] classified = vcat(classified, result) end end # Write the classified data to a csv file using CSV CSV.write("data/cards_top100_results.csv", classified) ##