## Mini Encoder from sentence_transformers import SentenceTransformer ## Model 1: mini-encoder model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') def get_embeddings(sentences): embeddings = model.encode(sentences) return embeddings ## Model 2: intfloat/multilingual-e5-large from sentence_transformers import SentenceTransformer modelbig = SentenceTransformer("sentence-transformers/gtr-t5-large") """ sentences = [ "That is a happy person", "That is a happy dog", "That is a very happy person", "Today is a sunny day" ] similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [4, 4] """ def get_embeddings_big(sentences): embeddings = modelbig.encode(sentences) return embeddings