jingwwu's picture
Upload folder using huggingface_hub
1ece203 verified
import gradio as gr
import numpy as np
import random
import spaces
from PIL import Image
# import spaces #[uncomment to use ZeroGPU]
import torch
from transformers import AutoTokenizer, AutoModel
from models.gen_pipeline import NextStepPipeline
from utils.aspect_ratio import center_crop_arr_with_buckets
HF_HUB = "stepfun-ai/NextStep-1-Large-Edit"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(HF_HUB, local_files_only=False, trust_remote_code=True)
model = AutoModel.from_pretrained(HF_HUB, local_files_only=False, trust_remote_code=True)
pipeline = NextStepPipeline(tokenizer=tokenizer, model=model).to(device=device)
MAX_SEED = np.iinfo(np.int16).max
MAX_IMAGE_SIZE = 512
DEFAULT_POSITIVE_PROMPT = None
DEFAULT_NEGATIVE_PROMPT = "copy the original image"
@spaces.GPU(duration=300)
def infer(
prompt=None,
ref=None,
seed=0,
text_cfg=7.5,
img_cfg=2.0,
num_inference_steps=30,
positive_prompt=DEFAULT_POSITIVE_PROMPT,
negative_prompt=DEFAULT_NEGATIVE_PROMPT,
progress=gr.Progress(track_tqdm=True),
):
if ref is None:
gr.Warning("⚠️ 请上传图片!")
return None
if prompt in [None, ""]:
gr.Warning("⚠️ 请输入提示词!")
return None
if ref is not None:
editing_caption = "<image>" + prompt
input_image = ref
input_image = center_crop_arr_with_buckets(input_image, buckets=[512])
else:
editing_caption = prompt
input_image = None
img_cfg = 1.0
image = pipeline.generate_image(
captions=editing_caption,
images=input_image,
num_images_per_caption=2,
positive_prompt=positive_prompt,
negative_prompt=negative_prompt,
hw=(input_image.size[1], input_image.size[0]),
cfg=text_cfg,
cfg_img=img_cfg,
cfg_schedule="constant",
use_norm=True,
num_sampling_steps=num_inference_steps,
seed=seed,
progress=True,
)
return image[0], image[1]
examples = [
["修改图像,让白马向镜头奔跑。", "assets/1.jpg"],
["Change the background to the sea view.", "assets/2.jpg"],
["Add a pirate hat to the dog's head. Change the background to a stormy sea with dark clouds. Include the text 'NextStep-Edit' in bold white letters at the top portion of the image.", "assets/3.jpg"],
["改为吉卜力风格。", "assets/4.jpg"],
]
css = """
#col-container {
margin: 0 auto;
max-width: 800px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # NextStep-1-Large-Edit")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
with gr.Row():
ref = gr.Image(label="Reference Image", show_label=True, type="pil", height=400)
with gr.Accordion("Advanced Settings", open=True):
positive_prompt = gr.Text(
label="Positive Prompt",
show_label=False,
max_lines=2,
placeholder="Enter your positive prompt",
container=False,
)
negative_prompt = gr.Text(
label="Negative Prompt",
show_label=False,
max_lines=2,
placeholder="Enter your negative prompt",
container=False,
)
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
num_inference_steps = gr.Slider(
label="# sampling steps",
minimum=10,
maximum=50,
step=1,
value=30, # Replace with defaults that work for your model
)
with gr.Row():
text_cfg = gr.Slider(
label="Text cfg",
minimum=1.0,
maximum=15.0,
step=0.1,
value=7.5, # Replace with defaults that work for your model
)
img_cfg = gr.Slider(
label="Image cfg",
minimum=1.0,
maximum=15.0,
step=0.1,
value=2.0, # Replace with defaults that work for your model
)
with gr.Row():
result_1 = gr.Image(label="Result 1", show_label=False, container=True, height=400, visible=False)
result_2 = gr.Image(label="Result 2", show_label=False, container=True, height=400, visible=False)
gr.Examples(examples=examples, inputs=[prompt, ref])
def show_result():
return gr.update(visible=True), gr.update(visible=True)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
ref,
seed,
text_cfg,
img_cfg,
num_inference_steps,
positive_prompt,
negative_prompt,
],
outputs=[result_1, result_2],
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=show_result,
outputs=[result_1, result_2],
)
if __name__ == "__main__":
demo.launch()