File size: 19,110 Bytes
55f226f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
import torch
import pytorch3d


from pytorch3d.io import load_objs_as_meshes, load_obj, save_obj, IO

from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
	look_at_view_transform,
	FoVPerspectiveCameras, 
	FoVOrthographicCameras,
	AmbientLights,
	PointLights, 
	DirectionalLights, 
	Materials, 
	RasterizationSettings, 
	MeshRenderer, 
	MeshRasterizer,  
	TexturesUV
)

from .geometry import HardGeometryShader
from .shader import HardNChannelFlatShader
from .voronoi import voronoi_solve
from trimesh import Trimesh

# Pytorch3D based renderering functions, managed in a class
# Render size is recommended to be the same as your latent view size
# DO NOT USE "bilinear" sampling when you are handling latents.
# Stable Diffusion has 4 latent channels so use channels=4

class UVProjection():
	def __init__(self, texture_size=96, render_size=64, sampling_mode="nearest", channels=3, device=None):
		self.channels = channels
		self.device = device or torch.device("cpu")
		self.lights = AmbientLights(ambient_color=((1.0,)*channels,), device=self.device)
		self.target_size = (texture_size,texture_size)
		self.render_size = render_size
		self.sampling_mode = sampling_mode


	# # Load obj mesh, rescale the mesh to fit into the bounding box
	# def load_mesh(self, mesh_path, scale_factor=2.0, auto_center=True, autouv=False):
	# 	mesh = load_objs_as_meshes([mesh_path], device=self.device)
	# 	if auto_center:
	# 		verts = mesh.verts_packed()
	# 		max_bb = (verts - 0).max(0)[0]
	# 		min_bb = (verts - 0).min(0)[0]
	# 		scale = (max_bb - min_bb).max()/2
	# 		center = (max_bb+min_bb) /2
	# 		mesh.offset_verts_(-center)
	# 		mesh.scale_verts_((scale_factor / float(scale)))		
	# 	else:
	# 		mesh.scale_verts_((scale_factor))

	# 	if autouv or (mesh.textures is None):
	# 		mesh = self.uv_unwrap(mesh)
	# 	self.mesh = mesh
		# Load obj mesh, rescale the mesh to fit into the bounding box
	def load_mesh(self, mesh, scale_factor=2.0, auto_center=True, autouv=False, normals=None):
		if isinstance(mesh, Trimesh):
			vertices = torch.tensor(mesh.vertices, dtype=torch.float32).to(self.device)
			faces = torch.tensor(mesh.faces, dtype=torch.int64).to(self.device)
			if faces.ndim == 1:
				faces = faces.unsqueeze(0)
			mesh = Meshes(
				verts=[vertices],  
				faces=[faces]      
			)
			verts = mesh.verts_packed()
			mesh = mesh.update_padded(verts[None,:, :])
			# from pytorch3d.renderer.mesh.textures import TexturesVertex
			# if normals is None:
			# 	normals = mesh.verts_normals_packed()
			# # set normals as vertext colors
			# mesh.textures = TexturesVertex(verts_features=[normals / 2 + 0.5])
		elif isinstance(mesh, str) and os.path.isfile(mesh):
			mesh = load_objs_as_meshes([mesh_path], device=self.device)
			if auto_center:
				verts = mesh.verts_packed()
				max_bb = (verts - 0).max(0)[0]
				min_bb = (verts - 0).min(0)[0]
				scale = (max_bb - min_bb).max()/2
				center = (max_bb+min_bb) /2
				mesh.offset_verts_(-center)
				mesh.scale_verts_((scale_factor / float(scale)))		
			else:
				mesh.scale_verts_((scale_factor))
		
		if autouv or (mesh.textures is None):
			mesh = self.uv_unwrap(mesh)
		self.mesh = mesh

	def load_glb_mesh(self, mesh_path, scale_factor=2.0, auto_center=True, autouv=False):
		from pytorch3d.io.experimental_gltf_io import MeshGlbFormat
		io = IO()
		io.register_meshes_format(MeshGlbFormat())
		with open(mesh_path, "rb") as f:
			mesh = io.load_mesh(f, include_textures=True, device=self.device)
		if auto_center:
			verts = mesh.verts_packed()
			max_bb = (verts - 0).max(0)[0]
			min_bb = (verts - 0).min(0)[0]
			scale = (max_bb - min_bb).max()/2 
			center = (max_bb+min_bb) /2
			mesh.offset_verts_(-center)
			mesh.scale_verts_((scale_factor / float(scale)))
		else:
			mesh.scale_verts_((scale_factor))
		if autouv or (mesh.textures is None):
			mesh = self.uv_unwrap(mesh)
		self.mesh = mesh


	# Save obj mesh
	def save_mesh(self, mesh_path, texture):
		save_obj(mesh_path, 
				self.mesh.verts_list()[0],
				self.mesh.faces_list()[0],
				verts_uvs= self.mesh.textures.verts_uvs_list()[0],
				faces_uvs= self.mesh.textures.faces_uvs_list()[0],
				texture_map=texture)

	# Code referred to TEXTure code (https://github.com/TEXTurePaper/TEXTurePaper.git)
	def uv_unwrap(self, mesh):
		verts_list = mesh.verts_list()[0]
		faces_list = mesh.faces_list()[0]


		import xatlas
		import numpy as np
		v_np = verts_list.cpu().numpy()
		f_np = faces_list.int().cpu().numpy()
		atlas = xatlas.Atlas()
		atlas.add_mesh(v_np, f_np)
		chart_options = xatlas.ChartOptions()
		chart_options.max_iterations = 4
		atlas.generate(chart_options=chart_options)
		vmapping, ft_np, vt_np = atlas[0]  # [N], [M, 3], [N, 2]

		vt = torch.from_numpy(vt_np.astype(np.float32)).type(verts_list.dtype).to(mesh.device)
		ft = torch.from_numpy(ft_np.astype(np.int64)).type(faces_list.dtype).to(mesh.device)

		new_map = torch.zeros(self.target_size+(self.channels,), device=mesh.device)
		new_tex = TexturesUV(
			[new_map], 
			[ft], 
			[vt], 
			sampling_mode=self.sampling_mode
			)

		mesh.textures = new_tex
		return mesh


	'''
		A functions that disconnect faces in the mesh according to
		its UV seams. The number of vertices are made equal to the
		number of unique vertices its UV layout, while the faces list
		is intact.
	'''
	def disconnect_faces(self):
		mesh = self.mesh
		verts_list = mesh.verts_list()
		faces_list = mesh.faces_list()
		verts_uvs_list = mesh.textures.verts_uvs_list()
		faces_uvs_list = mesh.textures.faces_uvs_list()
		packed_list = [v[f] for v,f in zip(verts_list, faces_list)]
		verts_disconnect_list = [
			torch.zeros(
				(verts_uvs_list[i].shape[0], 3), 
				dtype=verts_list[0].dtype, 
				device=verts_list[0].device
			) 
			for i in range(len(verts_list))]
		for i in range(len(verts_list)):
			verts_disconnect_list[i][faces_uvs_list] = packed_list[i]
		assert not mesh.has_verts_normals(), "Not implemented for vertex normals"
		self.mesh_d = Meshes(verts_disconnect_list, faces_uvs_list, mesh.textures)
		return self.mesh_d


	'''
		A function that construct a temp mesh for back-projection.
		Take a disconnected mesh and a rasterizer, the function calculates
		the projected faces as the UV, as use its original UV with pseudo
		z value as world space geometry.
	'''
	def construct_uv_mesh(self):
		mesh = self.mesh_d
		verts_list = mesh.verts_list()
		verts_uvs_list = mesh.textures.verts_uvs_list()
		# faces_list = [torch.flip(faces, [-1]) for faces in mesh.faces_list()]
		new_verts_list = []
		for i, (verts, verts_uv) in enumerate(zip(verts_list, verts_uvs_list)):
			verts = verts.clone()
			verts_uv = verts_uv.clone()
			verts[...,0:2] = verts_uv[...,:]
			verts = (verts - 0.5) * 2
			verts[...,2] *= 1
			new_verts_list.append(verts)
		textures_uv = mesh.textures.clone()
		self.mesh_uv = Meshes(new_verts_list, mesh.faces_list(), textures_uv)
		return self.mesh_uv


	# Set texture for the current mesh.
	def set_texture_map(self, texture):
		new_map = texture.permute(1, 2, 0)
		new_map = new_map.to(self.device)
		new_tex = TexturesUV(
			[new_map], 
			self.mesh.textures.faces_uvs_padded(), 
			self.mesh.textures.verts_uvs_padded(), 
			sampling_mode=self.sampling_mode
			)
		self.mesh.textures = new_tex


	# Set the initial normal noise texture
	# No generator here for replication of the experiment result. Add one as you wish
	def set_noise_texture(self, channels=None):
		if not channels:
			channels = self.channels
		noise_texture = torch.normal(0, 1, (channels,) + self.target_size, device=self.device)
		self.set_texture_map(noise_texture)
		return noise_texture


	# Set the cameras given the camera poses and centers
	def set_cameras(self, camera_poses, centers=None, camera_distance=2.7, scale=None):
		elev = torch.FloatTensor([pose[0] for pose in camera_poses])
		azim = torch.FloatTensor([pose[1] for pose in camera_poses])
		R, T = look_at_view_transform(dist=camera_distance, elev=elev, azim=azim, at=centers or ((0,0,0),))
		# self.cameras = FoVOrthographicCameras(device=self.device, R=R, T=T, scale_xyz=scale or ((1,1,1),))
		self.cameras = FoVOrthographicCameras(device=self.device, R=R, T=T, scale_xyz=scale or ((1,1,1),), znear=0.1, min_x=-0.55, max_x=0.55, min_y=-0.55, max_y=0.55)

	# Set all necessary internal data for rendering and texture baking
	# Can be used to refresh after changing camera positions
	def set_cameras_and_render_settings(self, camera_poses, centers=None, camera_distance=2.7, render_size=None, scale=None):
		self.set_cameras(camera_poses, centers, camera_distance, scale=scale)
		if render_size is None:
			render_size = self.render_size
		if not hasattr(self, "renderer"):
			self.setup_renderer(size=render_size)
		if not hasattr(self, "mesh_d"):
			self.disconnect_faces()
		if not hasattr(self, "mesh_uv"):
			self.construct_uv_mesh()
		self.calculate_tex_gradient()
		self.calculate_visible_triangle_mask()
		_,_,_,cos_maps,_, _ = self.render_geometry()
		self.calculate_cos_angle_weights(cos_maps)


	# Setup renderers for rendering
	# max faces per bin set to 30000 to avoid overflow in many test cases.
	# You can use default value to let pytorch3d handle that for you.
	def setup_renderer(self, size=64, blur=0.0, face_per_pix=1, perspective_correct=False, channels=None):
		if not channels:
			channels = self.channels

		self.raster_settings = RasterizationSettings(
			image_size=size, 
			blur_radius=blur, 
			faces_per_pixel=face_per_pix,
			perspective_correct=perspective_correct,
			cull_backfaces=True,
			max_faces_per_bin=30000,
		)

		self.renderer = MeshRenderer(
			rasterizer=MeshRasterizer(
				cameras=self.cameras, 
				raster_settings=self.raster_settings,

			),
			shader=HardNChannelFlatShader(
				device=self.device, 
				cameras=self.cameras,
				lights=self.lights,
				channels=channels
				# materials=materials
			)
		)


	# Bake screen-space cosine weights to UV space
	# May be able to reimplement using the generic "bake_texture" function, but it works so leave it here for now
	@torch.enable_grad()
	def calculate_cos_angle_weights(self, cos_angles, fill=True, channels=None):
		if not channels:
			channels = self.channels
		cos_maps = []
		tmp_mesh = self.mesh.clone()
		for i in range(len(self.cameras)):
			
			zero_map = torch.zeros(self.target_size+(channels,), device=self.device, requires_grad=True)
			optimizer = torch.optim.SGD([zero_map], lr=1, momentum=0)
			optimizer.zero_grad()
			zero_tex = TexturesUV([zero_map], self.mesh.textures.faces_uvs_padded(), self.mesh.textures.verts_uvs_padded(), sampling_mode=self.sampling_mode)
			tmp_mesh.textures = zero_tex

			images_predicted = self.renderer(tmp_mesh, cameras=self.cameras[i], lights=self.lights)

			loss = torch.sum((cos_angles[i,:,:,0:1]**1 - images_predicted)**2)
			loss.backward()
			optimizer.step()

			if fill:
				zero_map = zero_map.detach() / (self.gradient_maps[i] + 1E-8)
				zero_map = voronoi_solve(zero_map, self.gradient_maps[i][...,0])
			else:
				zero_map = zero_map.detach() / (self.gradient_maps[i]+1E-8)
			cos_maps.append(zero_map)
		self.cos_maps = cos_maps

		
	# Get geometric info from fragment shader
	# Can be used for generating conditioning image and cosine weights
	# Returns some information you may not need, remember to release them for memory saving
	@torch.no_grad()
	def render_geometry(self, image_size=None):
		if image_size:
			size = self.renderer.rasterizer.raster_settings.image_size
			self.renderer.rasterizer.raster_settings.image_size = image_size
		shader = self.renderer.shader
		self.renderer.shader = HardGeometryShader(device=self.device, cameras=self.cameras[0], lights=self.lights)
		tmp_mesh = self.mesh.clone()
		
		verts, normals, depths, cos_angles, texels, fragments = self.renderer(tmp_mesh.extend(len(self.cameras)), cameras=self.cameras, lights=self.lights)
		self.renderer.shader = shader

		if image_size:
			self.renderer.rasterizer.raster_settings.image_size = size

		return verts, normals, depths, cos_angles, texels, fragments


	# Project world normal to view space and normalize
	@torch.no_grad()
	def decode_view_normal(self, normals):
		w2v_mat = self.cameras.get_full_projection_transform()
		normals_view = torch.clone(normals)[:,:,:,0:3]
		normals_view = normals_view.reshape(normals_view.shape[0], -1, 3)
		normals_view = w2v_mat.transform_normals(normals_view)
		normals_view = normals_view.reshape(normals.shape[0:3]+(3,))
		normals_view[:,:,:,2] *= -1
		normals = (normals_view[...,0:3]+1) * normals[...,3:] / 2 + torch.FloatTensor(((((0.5,0.5,1))))).to(self.device) * (1 - normals[...,3:])
		# normals = torch.cat([normal for normal in normals], dim=1)
		normals = normals.clamp(0, 1)
		return normals


	# Normalize absolute depth to inverse depth
	@torch.no_grad()
	def decode_normalized_depth(self, depths, batched_norm=False):
		view_z, mask = depths.unbind(-1)
		view_z = view_z * mask + 100 * (1-mask)
		inv_z = 1 / view_z
		inv_z_min = inv_z * mask + 100 * (1-mask)
		if not batched_norm:
			max_ = torch.max(inv_z, 1, keepdim=True)
			max_ = torch.max(max_[0], 2, keepdim=True)[0]

			min_ = torch.min(inv_z_min, 1, keepdim=True)
			min_ = torch.min(min_[0], 2, keepdim=True)[0]
		else:
			max_ = torch.max(inv_z)
			min_ = torch.min(inv_z_min)
		inv_z = (inv_z - min_) / (max_ - min_)
		inv_z = inv_z.clamp(0,1)
		inv_z = inv_z[...,None].repeat(1,1,1,3)

		return inv_z


	# Multiple screen pixels could pass gradient to a same texel
	# We can precalculate this gradient strength and use it to normalize gradients when we bake textures
	@torch.enable_grad()
	def calculate_tex_gradient(self, channels=None):
		if not channels:
			channels = self.channels
		tmp_mesh = self.mesh.clone()
		gradient_maps = []
		for i in range(len(self.cameras)):
			zero_map = torch.zeros(self.target_size+(channels,), device=self.device, requires_grad=True)
			optimizer = torch.optim.SGD([zero_map], lr=1, momentum=0)
			optimizer.zero_grad()
			zero_tex = TexturesUV([zero_map], self.mesh.textures.faces_uvs_padded(), self.mesh.textures.verts_uvs_padded(), sampling_mode=self.sampling_mode)
			tmp_mesh.textures = zero_tex
			images_predicted = self.renderer(tmp_mesh, cameras=self.cameras[i], lights=self.lights)
			loss = torch.sum((1 - images_predicted)**2)
			loss.backward()
			optimizer.step()

			gradient_maps.append(zero_map.detach())

		self.gradient_maps = gradient_maps


	# Get the UV space masks of triangles visible in each view
	# First get face ids from each view, then filter pixels on UV space to generate masks
	@torch.no_grad()
	def calculate_visible_triangle_mask(self, channels=None, image_size=(512,512)):
		if not channels:
			channels = self.channels

		pix2face_list = []
		for i in range(len(self.cameras)):
			self.renderer.rasterizer.raster_settings.image_size=image_size
			pix2face = self.renderer.rasterizer(self.mesh_d, cameras=self.cameras[i]).pix_to_face
			self.renderer.rasterizer.raster_settings.image_size=self.render_size
			pix2face_list.append(pix2face)

		if not hasattr(self, "mesh_uv"):
			self.construct_uv_mesh()

		raster_settings = RasterizationSettings(
			image_size=self.target_size, 
			blur_radius=0, 
			faces_per_pixel=1,
			perspective_correct=False,
			cull_backfaces=False,
			max_faces_per_bin=30000,
			)

		R, T = look_at_view_transform(dist=2, elev=0, azim=0)
		cameras = FoVOrthographicCameras(device=self.device, R=R, T=T)

		rasterizer=MeshRasterizer(
			cameras=cameras, 
			raster_settings=raster_settings
		)
		uv_pix2face = rasterizer(self.mesh_uv).pix_to_face

		visible_triangles = []
		for i in range(len(pix2face_list)):
			valid_faceid = torch.unique(pix2face_list[i])
			valid_faceid = valid_faceid[1:] if valid_faceid[0]==-1 else valid_faceid
			mask = torch.isin(uv_pix2face[0], valid_faceid, assume_unique=False)
			# uv_pix2face[0][~mask] = -1
			triangle_mask = torch.ones(self.target_size+(1,), device=self.device)
			triangle_mask[~mask] = 0
			
			triangle_mask[:,1:][triangle_mask[:,:-1] > 0] = 1
			triangle_mask[:,:-1][triangle_mask[:,1:] > 0] = 1
			triangle_mask[1:,:][triangle_mask[:-1,:] > 0] = 1
			triangle_mask[:-1,:][triangle_mask[1:,:] > 0] = 1
			visible_triangles.append(triangle_mask)

		self.visible_triangles = visible_triangles



	# Render the current mesh and texture from current cameras
	def render_textured_views(self):
		meshes = self.mesh.extend(len(self.cameras))
		images_predicted = self.renderer(meshes, cameras=self.cameras, lights=self.lights)

		return [image.permute(2, 0, 1) for image in images_predicted]


	# Bake views into a texture
	# First bake into individual textures then combine based on cosine weight
	@torch.enable_grad()
	def bake_texture(self, views=None, main_views=[], cos_weighted=True, channels=None, exp=None, noisy=False, generator=None):
		if not exp:
			exp=1
		if not channels:
			channels = self.channels
		views = [view.permute(1, 2, 0) for view in views]

		tmp_mesh = self.mesh
		bake_maps = [torch.zeros(self.target_size+(views[0].shape[2],), device=self.device, requires_grad=True) for view in views]
		optimizer = torch.optim.SGD(bake_maps, lr=1, momentum=0)
		optimizer.zero_grad()
		loss = 0
		for i in range(len(self.cameras)):    
			bake_tex = TexturesUV([bake_maps[i]], tmp_mesh.textures.faces_uvs_padded(), tmp_mesh.textures.verts_uvs_padded(), sampling_mode=self.sampling_mode)
			tmp_mesh.textures = bake_tex
			images_predicted = self.renderer(tmp_mesh, cameras=self.cameras[i], lights=self.lights, device=self.device)
			predicted_rgb = images_predicted[..., :-1]
			loss += (((predicted_rgb[...] - views[i]))**2).sum()
		loss.backward(retain_graph=False)
		optimizer.step()

		total_weights = 0
		baked = 0
		for i in range(len(bake_maps)):
			normalized_baked_map = bake_maps[i].detach() / (self.gradient_maps[i] + 1E-8)
			bake_map = voronoi_solve(normalized_baked_map, self.gradient_maps[i][...,0])
			weight = self.visible_triangles[i] * (self.cos_maps[i]) ** exp
			if noisy:
				noise = torch.rand(weight.shape[:-1]+(1,), generator=generator).type(weight.dtype).to(weight.device)
				weight *= noise
			total_weights += weight
			baked += bake_map * weight
		baked /= total_weights + 1E-8
		baked = voronoi_solve(baked, total_weights[...,0])

		bake_tex = TexturesUV([baked], tmp_mesh.textures.faces_uvs_padded(), tmp_mesh.textures.verts_uvs_padded(), sampling_mode=self.sampling_mode)
		tmp_mesh.textures = bake_tex
		extended_mesh = tmp_mesh.extend(len(self.cameras))
		images_predicted = self.renderer(extended_mesh, cameras=self.cameras, lights=self.lights)
		learned_views = [image.permute(2, 0, 1) for image in images_predicted]

		return learned_views, baked.permute(2, 0, 1), total_weights.permute(2, 0, 1)


	# Move the internel data to a specific device
	def to(self, device):
		for mesh_name in ["mesh", "mesh_d", "mesh_uv"]:
			if hasattr(self, mesh_name):
				mesh = getattr(self, mesh_name)
				setattr(self, mesh_name, mesh.to(device))
		for list_name in ["visible_triangles", "visibility_maps", "cos_maps"]:
			if hasattr(self, list_name):
				map_list = getattr(self, list_name)
				for i in range(len(map_list)):
					map_list[i] = map_list[i].to(device)