File size: 8,868 Bytes
2ac1c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# coding=utf-8
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Reference:
# * transformers/models/dinov2/modeling_dinov2.py
# * https://github.com/facebookresearch/DiT/blob/main/models.py#L101
# * https://github.com/3DTopia/OpenLRM/tree/main/openlrm/models/encoders/dinov2
"""PyTorch DINOv2 model."""

from typing import Dict, List, Optional, Set, Tuple, Union

import torch
import torch.nn as nn

from .modeling_dinov2 import (
    Dinov2Config,
    Dinov2Layer,
    Dinov2Model,
    Dinov2Embeddings,
    BaseModelOutput,
    BaseModelOutputWithPooling,
)


class ModLN(nn.Module):
    def __init__(self, inner_dim: int, mod_dim: int = 1024):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.SiLU(),
            nn.Linear(mod_dim, inner_dim * 2),
        )

        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.zeros_(m.weight)
                nn.init.zeros_(m.bias)

    def forward(self, x: torch.Tensor, condition: torch.Tensor):
        """
        x: [N, M, C_in], M: num of tokens
        condition: [N, C_mod]
        """
        shift, scale = self.mlp(condition).unsqueeze(1).chunk(2, dim=-1)
        return x * (1 + scale) + shift


class ConditionalDinov2Config(Dinov2Config):
    def __init__(self, modulation_dim: int = 1024, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.modulation_dim = modulation_dim


class ConditionalDinov2Layer(Dinov2Layer):
    """This corresponds to the Block class in the original implementation."""

    def __init__(self, config: ConditionalDinov2Config) -> None:
        super().__init__(config)
        self.mod_norm1 = ModLN(config.hidden_size, config.modulation_dim)
        self.mod_norm2 = ModLN(config.hidden_size, config.modulation_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        condition: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
        self_attention_outputs = self.attention(
            self.mod_norm1(
                self.norm1(hidden_states), condition
            ),  # in Dinov2, layernorm is applied before self-attention
            head_mask,
            output_attentions=output_attentions,
        )
        attention_output = self_attention_outputs[0]

        attention_output = self.layer_scale1(attention_output)
        outputs = self_attention_outputs[
            1:
        ]  # add self attentions if we output attention weights

        # first residual connection
        hidden_states = self.drop_path(attention_output) + hidden_states

        # in Dinov2, layernorm is also applied after self-attention
        layer_output = self.mod_norm2(self.norm2(hidden_states), condition)
        layer_output = self.mlp(layer_output)
        layer_output = self.layer_scale2(layer_output)

        # second residual connection
        layer_output = self.drop_path(layer_output) + hidden_states

        outputs = (layer_output,) + outputs

        return outputs


# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->Dinov2
class ConditionalDinov2Encoder(nn.Module):
    def __init__(self, config: ConditionalDinov2Config) -> None:
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList(
            [ConditionalDinov2Layer(config) for _ in range(config.num_hidden_layers)]
        )
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        condition: Optional[torch.Tensor] = None,
        return_dict: bool = True,
    ) -> Union[tuple, BaseModelOutput]:
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    layer_module.__call__,
                    hidden_states,
                    layer_head_mask,
                    condition,
                    output_attentions,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    layer_head_mask,
                    condition,
                    output_attentions,
                )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, all_hidden_states, all_self_attentions]
                if v is not None
            )
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


class ConditionalDinov2Model(Dinov2Model):
    config_class = ConditionalDinov2Config

    def __init__(self, config: ConditionalDinov2Config):
        super().__init__(config)
        self.config = config

        self.embeddings = Dinov2Embeddings(config)
        self.encoder = ConditionalDinov2Encoder(config)

        self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        bool_masked_pos: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        condition: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(
            pixel_values, bool_masked_pos=bool_masked_pos
        )

        encoder_outputs = self.encoder(
            embedding_output,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            condition=condition,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        sequence_output = self.layernorm(sequence_output)
        pooled_output = sequence_output[:, 0, :]

        if not return_dict:
            head_outputs = (sequence_output, pooled_output)
            return head_outputs + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )