Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,156 Bytes
2ac1c2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
import random
import torch
from torch import nn
import numpy as np
import re
from einops import rearrange
from dataclasses import dataclass
from torchvision import transforms
from diffusers.models.modeling_utils import ModelMixin
from transformers import CLIPTokenizer, CLIPImageProcessor
from transformers import AutoImageProcessor, AutoModel
from transformers import T5EncoderModel, T5Tokenizer, AutoTokenizer
from transformers.utils import ModelOutput
from typing import Iterable, Optional, Union, List
import step1x3d_geometry
from step1x3d_geometry.utils.typing import *
from .clip.modeling_clip import CLIPModel
from .clip.modeling_conditional_clip import ConditionalCLIPModel
from .base import BaseVisualEncoder, ImageType
from .dinov2.modeling_dinov2 import Dinov2Model
from .dinov2.modeling_conditional_dinov2 import ConditionalDinov2Model
from .dinov2_with_registers.modeling_dinov2_with_registers import (
Dinov2WithRegistersModel,
)
CLIP_IMAGE_SIZE = 224
@dataclass
class CLIPEmbedOutput(ModelOutput):
last_hidden_state: torch.FloatTensor = None
pooler_output: torch.FloatTensor = None
embeds: torch.FloatTensor = None
class DINOEmbedOutput(ModelOutput):
last_hidden_state: torch.FloatTensor = None
pooler_output: torch.FloatTensor = None
@step1x3d_geometry.register("dinov2-clip-encoder")
class Dinov2CLIPEncoder(BaseVisualEncoder, ModelMixin):
@dataclass
class Config(BaseVisualEncoder.Config):
pretrained_model_name_or_path: Optional[str] = (
None # the pretrained model name or path for condition model
)
pretrained_clip_name_or_path: Optional[str] = (
None # the pretrained model name or path for clip
)
pretrained_dino_name_or_path: Optional[str] = (
None # the pretrained model name or path for dino
)
pretrained_linear_proj: Optional[str] = None
freeze_modulation_clip: bool = False
freeze_modulation_dino: bool = False
enable_gradient_checkpointing: bool = False
image_size: int = CLIP_IMAGE_SIZE
fuse_type: str = "concat"
dino_type: Optional[str] = None
clip_type: Optional[str] = None
kwargs: Optional[dict] = None
cfg: Config
def configure(self) -> None:
super().configure()
# Load the CLIP model and processor
if not self.cfg.encode_camera:
if self.cfg.pretrained_clip_name_or_path is not None:
self.cfg.clip_type = f"openai/{self.cfg.pretrained_clip_name_or_path.split('openai--')[-1].split('/')[0]}"
self.clip_model: CLIPModel = CLIPModel.from_pretrained(
self.cfg.pretrained_clip_name_or_path
)
else:
print("Loading CLIP model from openai/clip-vit-large-patch14")
self.dino_type = "openai/clip-vit-large-patch14"
self.clip_model: CLIPModel = CLIPModel(
config=ConditionalCLIPModel.config_class.from_pretrained(
"openai/clip-vit-large-patch14",
)
)
if self.cfg.pretrained_dino_name_or_path is not None:
self.cfg.dino_type = f"facebook/{self.cfg.pretrained_dino_name_or_path.split('facebook--')[-1].split('/')[0]}"
self.dino_model: Dinov2Model = AutoModel.from_pretrained(
self.cfg.pretrained_dino_name_or_path
)
else:
if (
self.cfg.pretrained_model_name_or_path is None
): # default to load Dinov2-base model
assert (
self.cfg.dino_type is not None
), "The dino_type should be provided"
print(f"Loading Dinov2 model from {self.cfg.dino_type}")
if "reg" in self.cfg.dino_type:
self.dino_model: Dinov2WithRegistersModel = (
Dinov2WithRegistersModel(
config=Dinov2WithRegistersModel.config_class.from_pretrained(
self.cfg.dino_type,
)
)
)
else:
self.dino_model: Dinov2Model = Dinov2Model(
config=Dinov2Model.config_class.from_pretrained(
self.dino_type,
)
)
elif "dinov2base" in self.cfg.pretrained_model_name_or_path:
print("Loading Dinov2 model from facebook/dinov2-base")
self.cfg.dino_type = "facebook/dinov2-base"
self.dino_model: Dinov2Model = Dinov2Model(
config=Dinov2Model.config_class.from_pretrained(
"facebook/dinov2-base",
)
)
elif "dinov2regbase" in self.cfg.pretrained_model_name_or_path:
print(
"Loading Dinov2 model from facebook/dinov2-with-registers-base"
)
self.cfg.dino_type = "facebook/dinov2-with-registers-base"
self.dino_model: Dinov2WithRegistersModel = (
Dinov2WithRegistersModel(
config=Dinov2WithRegistersModel.config_class.from_pretrained(
"facebook/dinov2-with-registers-base",
)
)
)
elif "dinov2reglarge" in self.cfg.pretrained_model_name_or_path:
print(
"Loading Dinov2 model from facebook/dinov2-with-registers-large"
)
self.cfg.dino_type = "facebook/dinov2-with-registers-large"
self.dino_model: Dinov2WithRegistersModel = (
Dinov2WithRegistersModel(
config=Dinov2WithRegistersModel.config_class.from_pretrained(
"facebook/dinov2-with-registers-large",
)
)
)
else:
raise ValueError(
f"Unknown Dinov2 model: {self.cfg.pretrained_model_name_or_path}"
)
else:
# clip
conditional_clip_config = ConditionalCLIPModel.config_class.from_pretrained(
self.cfg.pretrained_clip_name_or_path,
)
conditional_clip_config.vision_config.modulation_dim = (
self.cfg.camera_embeds_dim
)
self.clip_model: CLIPModel = ConditionalCLIPModel.from_pretrained(
self.cfg.pretrained_clip_name_or_path,
vision_config=conditional_clip_config.vision_config,
)
# dino
conditional_vit_config = (
ConditionalDinov2Model.config_class.from_pretrained(
self.cfg.pretrained_dino_name_or_path,
)
)
conditional_vit_config.modulation_dim = self.cfg.camera_embeds_dim
self.dino_model: ConditionalDinov2Model = (
ConditionalDinov2Model.from_pretrained(
self.cfg.pretrained_dino_name_or_path, config=conditional_vit_config
)
)
self.image_preprocess_clip = CLIPImageProcessor()
self.image_preprocess_dino = AutoImageProcessor.from_pretrained(
self.cfg.dino_type
if self.cfg.pretrained_dino_name_or_path is None
else self.cfg.pretrained_dino_name_or_path
)
self.transform_clip = transforms.Compose(
[
transforms.Resize(
CLIP_IMAGE_SIZE,
transforms.InterpolationMode.BICUBIC,
antialias=True,
), # clip is CLIP_IMAGE_SIZE
transforms.CenterCrop(CLIP_IMAGE_SIZE), # crop a square.
transforms.Normalize(
mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711],
),
]
)
self.transform_dino = transforms.Compose(
[
transforms.Resize(
self.cfg.image_size,
transforms.InterpolationMode.BICUBIC,
antialias=True,
),
transforms.CenterCrop(self.cfg.image_size), # crop a square
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
]
)
if self.cfg.enable_gradient_checkpointing:
self.dino_model.encoder.gradient_checkpointing = True
if self.cfg.zero_uncond_embeds:
image_size = max(self.cfg.image_size, self.cfg.image_size)
self.empty_image_embeds_dino = torch.zeros(
(self.cfg.n_views, (image_size // 14) ** 2 + 1, 1024)
).detach()
self.empty_image_embeds_clip = torch.zeros(
(self.cfg.n_views, (CLIP_IMAGE_SIZE // 14) ** 2 + 1, 1024)
).detach()
if self.cfg.fuse_type == "concat":
self.empty_image_embeds = torch.cat(
[self.empty_image_embeds_dino, self.empty_image_embeds_clip], dim=1
)
else:
raise ValueError
else:
if self.cfg.encode_camera:
self.empty_image_embeds_dino = self.encode_image_dino(
torch.zeros(
self.cfg.n_views, self.cfg.image_size, self.cfg.image_size, 3
),
self.cameras[: self.cfg.n_views],
).detach()
self.empty_image_embeds_clip = self.encode_image_clip(
torch.zeros(
self.cfg.n_views, self.cfg.image_size, self.cfg.image_size, 3
),
self.cameras[: self.cfg.n_views],
).detach()
else:
self.empty_image_embeds_dino = self.encode_image_dino(
torch.zeros(
self.cfg.n_views, self.cfg.image_size, self.cfg.image_size, 3
)
).detach()
self.empty_image_embeds_clip = self.encode_image_clip(
torch.zeros(
self.cfg.n_views, self.cfg.image_size, self.cfg.image_size, 3
)
).detach()
self.empty_image_embeds_clip, self.empty_image_embeds_dino = (
self.align_clip_dino(
self.empty_image_embeds_clip, self.empty_image_embeds_dino
)
)
self.empty_image_embeds = torch.cat(
[self.empty_image_embeds_dino, self.empty_image_embeds_clip], dim=1
)
# Freeze the clip model parameters
self.clip_model.eval()
for k, p in self.clip_model.named_parameters():
ks = k.split(".")
if (
"mod_norm1" in ks
or "mod_norm2" in ks
and not self.cfg.freeze_modulation_clip
):
p.requires_grad_(not self.cfg.freeze_modulation_clip)
else:
p.requires_grad_(False)
# freeze the dino model parameters
self.dino_model.eval()
for k, p in self.dino_model.named_parameters():
ks = k.split(".")
if (
"mod_norm1" in ks
or "mod_norm2" in ks
and not self.cfg.freeze_modulation_dino
):
p.requires_grad_(not self.cfg.freeze_modulation_dino)
else:
p.requires_grad_(False)
# add a linear projection layer to project the dino embeddings to the same dimension as clip embeddings
if (
self.clip_model.config.vision_config.hidden_size
!= self.dino_model.config.hidden_size
):
self.linear_proj = nn.Linear(
self.clip_model.config.vision_config.hidden_size,
self.dino_model.config.vision_config.hidden_size,
bias=False,
)
else:
self.linear_proj = nn.Identity()
if self.cfg.pretrained_model_name_or_path is not None:
print(f"Loading ckpt from {self.cfg.pretrained_model_name_or_path}")
ckpt = torch.load(
self.cfg.pretrained_model_name_or_path, map_location="cpu"
)["state_dict"]
pretrained_model_ckpt = {}
for k, v in ckpt.items():
if k.startswith("condition."):
pretrained_model_ckpt[k.replace("condition.", "")] = v
self.load_state_dict(pretrained_model_ckpt, strict=True)
def encode_image_clip(
self,
images: Iterable[Optional[ImageType]],
cameras: Optional[torch.Tensor] = None,
force_none_camera_embeds: bool = False,
return_dict: bool = False,
**kwargs,
) -> torch.FloatTensor:
camera_embeds = None
if isinstance(images, (np.ndarray, torch.Tensor)): # for training process
assert (
images.min() >= 0.0 and images.max() <= 1.0
), "The pixel values should be in the range of [0, 1]"
if self.cfg.encode_camera:
assert cameras is not None, "The cameras should be provided"
camera_embeds = self.encode_camera(cameras)
pixel_values = self.transform_clip(images.permute(0, 3, 1, 2))
else: # for inference process
if self.cfg.encode_camera:
if cameras is None:
bs = len(images) // self.cfg.n_views
cameras = (
self.cameras[: self.cfg.n_views]
.repeat(bs, 1, 1)
.to(self.clip_model.device)
)
camera_embeds = self.encode_camera(cameras)
pixel_values = self.image_preprocess_clip.preprocess(
images,
return_tensors="pt",
do_rescale=True,
do_resize=True,
size=CLIP_IMAGE_SIZE,
crop_size=CLIP_IMAGE_SIZE,
).pixel_values
if force_none_camera_embeds:
camera_embeds = None
if pixel_values.ndim == 4:
pixel_values = pixel_values.unsqueeze(1)
if camera_embeds is not None:
camera_embeds = camera_embeds.unsqueeze(1)
if self.cfg.encode_camera and camera_embeds is not None:
vision_outputs = self.clip_model.vision_model(
pixel_values=rearrange(
pixel_values.to(self.clip_model.device), "B N C H W -> (B N) C H W"
),
condition=rearrange(camera_embeds, "B N C -> (B N) C"),
)
else:
vision_outputs = self.clip_model.vision_model(
pixel_values=rearrange(
pixel_values.to(self.clip_model.device), "B N C H W -> (B N) C H W"
),
)
if return_dict:
# clip
pooler_output = vision_outputs[1] # pooled_output
image_features = self.clip_model.visual_projection(pooler_output)
clip_embeds = vision_outputs.last_hidden_state
clip_embeds_dict = CLIPEmbedOutput(
last_hidden_state=clip_embeds,
pooler_output=pooler_output,
embeds=image_features,
)
return clip_embeds_dict
else:
return vision_outputs.last_hidden_state
def encode_image_dino(
self,
images: Iterable[Optional[ImageType]],
cameras: Optional[torch.Tensor] = None,
force_none_camera_embeds: bool = False,
return_dict: bool = False,
**kwargs,
) -> torch.FloatTensor:
camera_embeds = None
if isinstance(images, (np.ndarray, torch.Tensor)): # for training process
assert (
images.min() >= 0.0 and images.max() <= 1.0
), "The pixel values should be in the range of [0, 1]"
if self.cfg.encode_camera:
assert cameras is not None, "The cameras should be provided"
camera_embeds = self.encode_camera(cameras)
pixel_values = self.transform_dino(images.permute(0, 3, 1, 2))
else: # for inference process
if self.cfg.encode_camera:
if cameras is None:
bs = len(images) // self.cfg.n_views
cameras = (
self.cameras[: self.cfg.n_views]
.repeat(bs, 1, 1)
.to(self.dino_model.device)
)
camera_embeds = self.encode_camera(cameras)
pixel_values = self.image_preprocess_dino.preprocess(
images,
return_tensors="pt",
do_rescale=True,
do_resize=True,
size=self.cfg.image_size,
crop_size=self.cfg.image_size,
).pixel_values
if force_none_camera_embeds:
camera_embeds = None
if pixel_values.ndim == 4:
pixel_values = pixel_values.unsqueeze(1)
if camera_embeds is not None:
camera_embeds = camera_embeds.unsqueeze(1)
if self.cfg.encode_camera and camera_embeds is not None:
vision_outputs = self.dino_model(
rearrange(
pixel_values.to(self.dino_model.device), "B N C H W -> (B N) C H W"
),
condition=rearrange(camera_embeds, "B N C -> (B N) C"),
)
else:
vision_outputs = self.dino_model(
rearrange(
pixel_values.to(self.dino_model.device), "B N C H W -> (B N) C H W"
),
)
if return_dict:
# dino
dino_embeds_dict = DINOEmbedOutput(
last_hidden_state=vision_outputs.last_hidden_state,
pooler_output=vision_outputs.pooler_output,
)
return dino_embeds_dict
else:
return vision_outputs.last_hidden_state
def align_clip_dino(self, clip_embeds, dino_embeds):
if (
clip_embeds.shape[-2] != dino_embeds.shape[-2]
): # different shape, interpolate the clip embeddings to the same shape as dino embeddings
assert (
clip_embeds.shape[-2] == (self.cfg.image_size // 14) ** 2 + 1
), "The clip embeddings should have the shape of (n_views, (image_size // 14) ** 2 + 1, 1024)"
clip_embeds_patch_tokens = clip_embeds[:, 1:].view(
clip_embeds.shape[0],
self.cfg.image_size // 14,
self.cfg.image_size // 14,
1024,
)
clip_embeds_patch_tokens = (
torch.nn.functional.interpolate(
clip_embeds_patch_tokens.permute(0, 3, 1, 2),
size=(self.cfg.image_size // 14, self.cfg.image_size // 14),
mode="bilinear",
align_corners=False,
)
.permute(0, 2, 3, 1)
.view(clip_embeds.shape[0], -1, 1024)
)
clip_embeds = torch.cat(
[clip_embeds[:, :1], clip_embeds_patch_tokens], dim=1
)
return clip_embeds, dino_embeds
def encode_image(
self,
images: Iterable[Optional[ImageType]],
cameras: Optional[torch.Tensor] = None,
force_none_camera_embeds: bool = False,
return_dict: bool = False,
**kwargs,
) -> torch.FloatTensor:
clip_embeds = self.encode_image_clip(images, cameras)
dino_embeds = self.encode_image_dino(images, cameras)
if (
self.dino_model.__class__.__name__ == "Dinov2WithRegistersModel"
): # x_norm_clstoken, x_norm_regtokens, x_norm_patchtokens
dino_embeds = torch.cat(
[
dino_embeds[:, :1],
dino_embeds[:, self.dino_model.config.num_register_tokens + 1 :],
],
dim=1,
)
clip_embeds = self.linear_proj(clip_embeds) # bs, 257, 1024
if self.cfg.fuse_type == "concat":
visual_embeds = torch.cat([dino_embeds, clip_embeds], dim=1)
# elif self.cfg.fuse_type == 'add':
# clip_embeds, dino_embeds = self.align_clip_dino(clip_embeds, dino_embeds)
else:
raise ValueError
return visual_embeds
|