Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,116 Bytes
2ac1c2d f55e443 2ac1c2d f55e443 2ac1c2d 0605002 2ac1c2d f55e443 2ac1c2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import argparse
import numpy as np
import torch
from diffusers import AutoencoderKL, DDPMScheduler, LCMScheduler, UNet2DConditionModel
from PIL import Image
from torchvision import transforms
from tqdm import tqdm
from transformers import AutoModelForImageSegmentation
from step1x3d_texture.models.attention_processor import (
DecoupledMVRowColSelfAttnProcessor2_0,
)
from step1x3d_texture.pipelines.ig2mv_sdxl_pipeline import IG2MVSDXLPipeline
from step1x3d_texture.schedulers.scheduling_shift_snr import ShiftSNRScheduler
from step1x3d_texture.utils import (
get_orthogonal_camera,
make_image_grid,
tensor_to_image,
)
from step1x3d_texture.utils.render import NVDiffRastContextWrapper, load_mesh, render
from step1x3d_texture.differentiable_renderer.mesh_render import MeshRender
import trimesh
import xatlas
import scipy.sparse
from scipy.sparse.linalg import spsolve
from step1x3d_geometry.models.pipelines.pipeline_utils import smart_load_model
class Step1X3DTextureConfig:
def __init__(self):
# prepare pipeline params
self.base_model = "stabilityai/stable-diffusion-xl-base-1.0"
self.vae_model = "madebyollin/sdxl-vae-fp16-fix"
self.unet_model = None
self.lora_model = None
self.adapter_path = "stepfun-ai/Step1X-3D"
self.scheduler = None
self.num_views = 6
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.dtype = torch.float16
self.lora_scale = None
# run pipeline params
self.text = "high quality"
self.num_inference_steps = 50
self.guidance_scale = 3.0
self.seed = -1
self.reference_conditioning_scale = 1.0
self.negative_prompt = "watermark, ugly, deformed, noisy, blurry, low contrast"
self.azimuth_deg = [0, 45, 90, 180, 270, 315]
# texture baker params
self.selected_camera_azims = [0, 90, 180, 270, 180, 180]
self.selected_camera_elevs = [0, 0, 0, 0, 90, -90]
self.selected_view_weights = [1, 0.1, 0.5, 0.1, 0.05, 0.05]
self.camera_distance = 1.8
self.render_size = 2048
self.texture_size = 2048
self.bake_exp = 4
self.merge_method = "fast"
class Step1X3DTexturePipeline:
def __init__(self, config):
self.config = config
self.mesh_render = MeshRender(
default_resolution=self.config.render_size,
texture_size=self.config.texture_size,
camera_distance=self.config.camera_distance,
)
self.ig2mv_pipe = self.prepare_ig2mv_pipeline(
base_model=self.config.base_model,
vae_model=self.config.vae_model,
unet_model=self.config.unet_model,
lora_model=self.config.lora_model,
adapter_path=self.config.adapter_path,
scheduler=self.config.scheduler,
num_views=self.config.num_views,
device=self.config.device,
dtype=self.config.dtype,
)
@classmethod
def from_pretrained(cls, model_path, subfolder):
config = Step1X3DTextureConfig()
local_model_path = smart_load_model(model_path, subfolder=subfolder)
print(f'Local model path: {local_model_path}')
config.adapter_path = local_model_path
return cls(config)
def mesh_uv_wrap(self, mesh):
if isinstance(mesh, trimesh.Scene):
mesh = mesh.to_geometry()
vmapping, indices, uvs = xatlas.parametrize(mesh.vertices, mesh.faces)
mesh.vertices = mesh.vertices[vmapping]
mesh.faces = indices
mesh.visual.uv = uvs
return mesh
def prepare_ig2mv_pipeline(
self,
base_model,
vae_model,
unet_model,
lora_model,
adapter_path,
scheduler,
num_views,
device,
dtype,
):
# Load vae and unet if provided
pipe_kwargs = {}
if vae_model is not None:
pipe_kwargs["vae"] = AutoencoderKL.from_pretrained(vae_model)
if unet_model is not None:
pipe_kwargs["unet"] = UNet2DConditionModel.from_pretrained(unet_model)
print('VAE Loaded!')
# Prepare pipeline
pipe = IG2MVSDXLPipeline.from_pretrained(base_model, **pipe_kwargs)
print('Base model Loaded!')
# Load scheduler if provided
scheduler_class = None
if scheduler == "ddpm":
scheduler_class = DDPMScheduler
elif scheduler == "lcm":
scheduler_class = LCMScheduler
pipe.scheduler = ShiftSNRScheduler.from_scheduler(
pipe.scheduler,
shift_mode="interpolated",
shift_scale=8.0,
scheduler_class=scheduler_class,
)
print('Scheduler Loaded!')
pipe.init_custom_adapter(
num_views=num_views,
self_attn_processor=DecoupledMVRowColSelfAttnProcessor2_0,
)
print(f'Load adapter from {adapter_path}/step1x-3d-ig2v.safetensors')
pipe.load_custom_adapter(adapter_path, "step1x-3d-ig2v.safetensors")
print(f'Load adapter successed!')
pipe.to(device=device, dtype=dtype)
pipe.cond_encoder.to(device=device, dtype=dtype)
# load lora if provided
if lora_model is not None:
model_, name_ = lora_model.rsplit("/", 1)
pipe.load_lora_weights(model_, weight_name=name_)
return pipe
def remove_bg(self, image, net, transform, device):
image_size = image.size
input_images = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
preds = net(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
def preprocess_image(self, image, height, width):
image = np.array(image)
alpha = image[..., 3] > 0
H, W = alpha.shape
# get the bounding box of alpha
y, x = np.where(alpha)
y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
image_center = image[y0:y1, x0:x1]
# resize the longer side to H * 0.9
H, W, _ = image_center.shape
if H > W:
W = int(W * (height * 0.9) / H)
H = int(height * 0.9)
else:
H = int(H * (width * 0.9) / W)
W = int(width * 0.9)
image_center = np.array(Image.fromarray(image_center).resize((W, H)))
# pad to H, W
start_h = (height - H) // 2
start_w = (width - W) // 2
image = np.zeros((height, width, 4), dtype=np.uint8)
image[start_h : start_h + H, start_w : start_w + W] = image_center
image = image.astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = (image * 255).clip(0, 255).astype(np.uint8)
image = Image.fromarray(image)
return image
def run_ig2mv_pipeline(
self,
pipe,
mesh,
num_views,
text,
image,
height,
width,
num_inference_steps,
guidance_scale,
seed,
remove_bg_fn=None,
reference_conditioning_scale=1.0,
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
lora_scale=1.0,
device="cuda",
):
# Prepare cameras
cameras = get_orthogonal_camera(
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
distance=[1.8] * num_views,
left=-0.55,
right=0.55,
bottom=-0.55,
top=0.55,
azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
device=device,
)
ctx = NVDiffRastContextWrapper(device=device, context_type="cuda")
mesh, mesh_bp = load_mesh(mesh, rescale=True, device=device)
render_out = render(
ctx,
mesh,
cameras,
height=height,
width=width,
render_attr=False,
normal_background=0.0,
)
pos_images = tensor_to_image((render_out.pos + 0.5).clamp(0, 1), batched=True)
normal_images = tensor_to_image(
(render_out.normal / 2 + 0.5).clamp(0, 1), batched=True
)
control_images = (
torch.cat(
[
(render_out.pos + 0.5).clamp(0, 1),
(render_out.normal / 2 + 0.5).clamp(0, 1),
],
dim=-1,
)
.permute(0, 3, 1, 2)
.to(device)
)
# Prepare image
reference_image = Image.open(image) if isinstance(image, str) else image
if len(reference_image.split()) == 1:
reference_image = reference_image.convert("RGBA")
if remove_bg_fn is not None and reference_image.mode == "RGB":
reference_image = remove_bg_fn(reference_image)
reference_image = self.preprocess_image(reference_image, height, width)
elif reference_image.mode == "RGBA":
reference_image = self.preprocess_image(reference_image, height, width)
pipe_kwargs = {}
if seed != -1 and isinstance(seed, int):
pipe_kwargs["generator"] = torch.Generator(device=device).manual_seed(seed)
images = pipe(
text,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=num_views,
control_image=control_images,
control_conditioning_scale=1.0,
reference_image=reference_image,
reference_conditioning_scale=reference_conditioning_scale,
negative_prompt=negative_prompt,
cross_attention_kwargs={"scale": lora_scale},
mesh=mesh_bp,
**pipe_kwargs,
).images
return images, pos_images, normal_images, reference_image, mesh, mesh_bp
def bake_from_multiview(
self,
render,
views,
camera_elevs,
camera_azims,
view_weights,
method="graphcut",
bake_exp=4,
):
project_textures, project_weighted_cos_maps = [], []
project_boundary_maps = []
for view, camera_elev, camera_azim, weight in zip(
views, camera_elevs, camera_azims, view_weights
):
project_texture, project_cos_map, project_boundary_map = (
render.back_project(view, camera_elev, camera_azim)
)
project_cos_map = weight * (project_cos_map**bake_exp)
project_textures.append(project_texture)
project_weighted_cos_maps.append(project_cos_map)
project_boundary_maps.append(project_boundary_map)
if method == "fast":
texture, ori_trust_map = render.fast_bake_texture(
project_textures, project_weighted_cos_maps
)
else:
raise f"no method {method}"
return texture, ori_trust_map > 1e-8
def texture_inpaint(self, render, texture, mask):
texture_np = render.uv_inpaint(texture, mask)
texture = torch.tensor(texture_np / 255).float().to(texture.device)
return texture
@torch.no_grad()
def __call__(self, image, mesh, remove_bg=True, seed=2025):
if remove_bg:
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to(self.config.device)
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
remove_bg_fn = lambda x: self.remove_bg(
x, birefnet, transform_image, self.config.device
)
else:
remove_bg_fn = None
if isinstance(mesh, trimesh.Scene):
mesh = mesh.to_geometry()
# multi-view generation pipeline
images, pos_images, normal_images, reference_image, textured_mesh, mesh_bp = (
self.run_ig2mv_pipeline(
self.ig2mv_pipe,
mesh=mesh,
num_views=self.config.num_views,
text=self.config.text,
image=image,
height=768,
width=768,
num_inference_steps=self.config.num_inference_steps,
guidance_scale=self.config.guidance_scale,
seed=seed if seed is not None else self.config.seed,
lora_scale=self.config.lora_scale,
reference_conditioning_scale=self.config.reference_conditioning_scale,
negative_prompt=self.config.negative_prompt,
device=self.config.device,
remove_bg_fn=remove_bg_fn,
)
)
for i in range(len(images)):
images[i] = images[i].resize(
(self.config.render_size, self.config.render_size),
Image.Resampling.LANCZOS,
)
mesh = self.mesh_uv_wrap(mesh_bp)
self.mesh_render.load_mesh(mesh, auto_center=False, scale_factor=1.0)
# texture baker
texture, mask = self.bake_from_multiview(
self.mesh_render,
images,
self.config.selected_camera_elevs,
self.config.selected_camera_azims,
self.config.selected_view_weights,
method="fast",
)
mask_np = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8)
# texture inpaint
texture = self.texture_inpaint(self.mesh_render, texture, mask_np)
self.mesh_render.set_texture(texture)
textured_mesh = self.mesh_render.save_mesh()
return textured_mesh
|