File size: 6,277 Bytes
2ac1c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import gc
import os
import re
import time
from collections import defaultdict
from contextlib import contextmanager

import psutil
import torch
from packaging import version

from .config import config_to_primitive
from .core import debug, find, info, warn
from .typing import *


def parse_version(ver: str):
    return version.parse(ver)


def get_rank():
    # SLURM_PROCID can be set even if SLURM is not managing the multiprocessing,
    # therefore LOCAL_RANK needs to be checked first
    rank_keys = ("RANK", "LOCAL_RANK", "SLURM_PROCID", "JSM_NAMESPACE_RANK")
    for key in rank_keys:
        rank = os.environ.get(key)
        if rank is not None:
            return int(rank)
    return 0


def get_device():
    return torch.device(f"cuda:{get_rank()}")


def load_module_weights(
    path, module_name=None, ignore_modules=None, mapping=None, map_location=None
) -> Tuple[dict, int, int]:
    if module_name is not None and ignore_modules is not None:
        raise ValueError("module_name and ignore_modules cannot be both set")
    if map_location is None:
        map_location = get_device()

    ckpt = torch.load(path, map_location=map_location)
    state_dict = ckpt["state_dict"]

    if mapping is not None:
        state_dict_to_load = {}
        for k, v in state_dict.items():
            if any([k.startswith(m["to"]) for m in mapping]):
                pass
            else:
                state_dict_to_load[k] = v
        for k, v in state_dict.items():
            for m in mapping:
                if k.startswith(m["from"]):
                    k_dest = k.replace(m["from"], m["to"])
                    info(f"Mapping {k} => {k_dest}")
                    state_dict_to_load[k_dest] = v.clone()
        state_dict = state_dict_to_load

    state_dict_to_load = state_dict

    if ignore_modules is not None:
        state_dict_to_load = {}
        for k, v in state_dict.items():
            ignore = any(
                [k.startswith(ignore_module + ".") for ignore_module in ignore_modules]
            )
            if ignore:
                continue
            state_dict_to_load[k] = v

    if module_name is not None:
        state_dict_to_load = {}
        for k, v in state_dict.items():
            m = re.match(rf"^{module_name}\.(.*)$", k)
            if m is None:
                continue
            state_dict_to_load[m.group(1)] = v

    return state_dict_to_load, ckpt["epoch"], ckpt["global_step"]


def C(value: Any, epoch: int, global_step: int) -> float:
    if isinstance(value, int) or isinstance(value, float):
        pass
    else:
        value = config_to_primitive(value)
        if not isinstance(value, list):
            raise TypeError("Scalar specification only supports list, got", type(value))
        if len(value) == 3:
            value = [0] + value
        assert len(value) == 4
        start_step, start_value, end_value, end_step = value
        if isinstance(end_step, int):
            current_step = global_step
            value = start_value + (end_value - start_value) * max(
                min(1.0, (current_step - start_step) / (end_step - start_step)), 0.0
            )
        elif isinstance(end_step, float):
            current_step = epoch
            value = start_value + (end_value - start_value) * max(
                min(1.0, (current_step - start_step) / (end_step - start_step)), 0.0
            )
    return value


def cleanup():
    gc.collect()
    torch.cuda.empty_cache()
    try:
        import tinycudann as tcnn

        tcnn.free_temporary_memory()
    except:
        pass


def finish_with_cleanup(func: Callable):
    def wrapper(*args, **kwargs):
        out = func(*args, **kwargs)
        cleanup()
        return out

    return wrapper


def _distributed_available():
    return torch.distributed.is_available() and torch.distributed.is_initialized()


def barrier():
    if not _distributed_available():
        return
    else:
        torch.distributed.barrier()


def broadcast(tensor, src=0):
    if not _distributed_available():
        return tensor
    else:
        torch.distributed.broadcast(tensor, src=src)
        return tensor


def enable_gradient(model, enabled: bool = True) -> None:
    for param in model.parameters():
        param.requires_grad_(enabled)


class TimeRecorder:
    _instance = None

    def __init__(self):
        self.items = {}
        self.accumulations = defaultdict(list)
        self.time_scale = 1000.0  # ms
        self.time_unit = "ms"
        self.enabled = False

    def __new__(cls):
        # singleton
        if cls._instance is None:
            cls._instance = super(TimeRecorder, cls).__new__(cls)
        return cls._instance

    def enable(self, enabled: bool) -> None:
        self.enabled = enabled

    def start(self, name: str) -> None:
        if not self.enabled:
            return
        torch.cuda.synchronize()
        self.items[name] = time.time()

    def end(self, name: str, accumulate: bool = False) -> float:
        if not self.enabled or name not in self.items:
            return
        torch.cuda.synchronize()
        start_time = self.items.pop(name)
        delta = time.time() - start_time
        if accumulate:
            self.accumulations[name].append(delta)
        t = delta * self.time_scale
        info(f"{name}: {t:.2f}{self.time_unit}")

    def get_accumulation(self, name: str, average: bool = False) -> float:
        if not self.enabled or name not in self.accumulations:
            return
        acc = self.accumulations.pop(name)
        total = sum(acc)
        if average:
            t = total / len(acc) * self.time_scale
        else:
            t = total * self.time_scale
        info(f"{name} for {len(acc)} times: {t:.2f}{self.time_unit}")


### global time recorder
time_recorder = TimeRecorder()


@contextmanager
def time_recorder_enabled():
    enabled = time_recorder.enabled
    time_recorder.enable(enabled=True)
    try:
        yield
    finally:
        time_recorder.enable(enabled=enabled)


def show_vram_usage(name):
    available, total = torch.cuda.mem_get_info()
    used = total - available
    print(
        f"{name}: {used / 1024**2:.1f}MB, {psutil.Process(os.getpid()).memory_info().rss / 1024**2:.1f}MB"
    )