File size: 18,746 Bytes
2ac1c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import json
import math
import os
import re
import shutil
from typing import List, Optional, Union

import cv2
import imageio
import matplotlib.pyplot as plt
import numpy as np
import torch

# import wandb
from matplotlib import cm
from matplotlib.colors import LinearSegmentedColormap
from PIL import Image, ImageDraw

from .typing import *


def tensor_to_image(
    data: Union[Image.Image, torch.Tensor, np.ndarray],
    batched: bool = False,
    format: str = "HWC",
) -> Union[Image.Image, List[Image.Image]]:
    if isinstance(data, Image.Image):
        return data
    if isinstance(data, torch.Tensor):
        data = data.detach().cpu().numpy()
    if data.dtype == np.float32 or data.dtype == np.float16:
        data = (data * 255).astype(np.uint8)
    elif data.dtype == np.bool_:
        data = data.astype(np.uint8) * 255
    assert data.dtype == np.uint8
    if format == "CHW":
        if batched and data.ndim == 4:
            data = data.transpose((0, 2, 3, 1))
        elif not batched and data.ndim == 3:
            data = data.transpose((1, 2, 0))

    if batched:
        return [Image.fromarray(d) for d in data]
    return Image.fromarray(data)


def largest_factor_near_sqrt(n: int) -> int:
    """
    Finds the largest factor of n that is closest to the square root of n.

    Args:
        n (int): The integer for which to find the largest factor near its square root.

    Returns:
        int: The largest factor of n that is closest to the square root of n.
    """
    sqrt_n = int(math.sqrt(n))  # Get the integer part of the square root

    # First, check if the square root itself is a factor
    if sqrt_n * sqrt_n == n:
        return sqrt_n

    # Otherwise, find the largest factor by iterating from sqrt_n downwards
    for i in range(sqrt_n, 0, -1):
        if n % i == 0:
            return i

    # If n is 1, return 1
    return 1


def make_image_grid(
    images: List[Image.Image],
    rows: Optional[int] = None,
    cols: Optional[int] = None,
    resize: Optional[int] = None,
) -> Image.Image:
    """
    Prepares a single grid of images. Useful for visualization purposes.
    """
    if rows is None and cols is not None:
        assert len(images) % cols == 0
        rows = len(images) // cols
    elif cols is None and rows is not None:
        assert len(images) % rows == 0
        cols = len(images) // rows
    elif rows is None and cols is None:
        rows = largest_factor_near_sqrt(len(images))
        cols = len(images) // rows

    assert len(images) == rows * cols

    if resize is not None:
        images = [img.resize((resize, resize)) for img in images]

    w, h = images[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))

    for i, img in enumerate(images):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid


class SaverMixin:
    _save_dir: Optional[str] = None
    _wandb_logger: Optional[Any] = None

    def set_save_dir(self, save_dir: str):
        self._save_dir = save_dir

    def get_save_dir(self):
        if self._save_dir is None:
            raise ValueError("Save dir is not set")
        return self._save_dir

    def convert_data(self, data):
        if data is None:
            return None
        elif isinstance(data, np.ndarray):
            return data
        elif isinstance(data, torch.Tensor):
            if data.dtype in [torch.float16, torch.bfloat16]:
                data = data.float()
            return data.detach().cpu().numpy()
        elif isinstance(data, list):
            return [self.convert_data(d) for d in data]
        elif isinstance(data, dict):
            return {k: self.convert_data(v) for k, v in data.items()}
        else:
            raise TypeError(
                "Data must be in type numpy.ndarray, torch.Tensor, list or dict, getting",
                type(data),
            )

    def get_save_path(self, filename):
        save_path = os.path.join(self.get_save_dir(), filename)
        os.makedirs(os.path.dirname(save_path), exist_ok=True)
        return save_path

    DEFAULT_RGB_KWARGS = {"data_format": "HWC", "data_range": (0, 1)}
    DEFAULT_UV_KWARGS = {
        "data_format": "HWC",
        "data_range": (0, 1),
        "cmap": "checkerboard",
    }
    DEFAULT_GRAYSCALE_KWARGS = {"data_range": None, "cmap": "jet"}
    DEFAULT_GRID_KWARGS = {"align": "max"}

    def get_rgb_image_(self, img, data_format, data_range, rgba=False):
        img = self.convert_data(img)
        assert data_format in ["CHW", "HWC"]
        if data_format == "CHW":
            img = img.transpose(1, 2, 0)
        if img.dtype != np.uint8:
            img = img.clip(min=data_range[0], max=data_range[1])
            img = (
                (img - data_range[0]) / (data_range[1] - data_range[0]) * 255.0
            ).astype(np.uint8)
        nc = 4 if rgba else 3
        imgs = [img[..., start : start + nc] for start in range(0, img.shape[-1], nc)]
        imgs = [
            (
                img_
                if img_.shape[-1] == nc
                else np.concatenate(
                    [
                        img_,
                        np.zeros(
                            (img_.shape[0], img_.shape[1], nc - img_.shape[2]),
                            dtype=img_.dtype,
                        ),
                    ],
                    axis=-1,
                )
            )
            for img_ in imgs
        ]
        img = np.concatenate(imgs, axis=1)
        if rgba:
            img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
        else:
            img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        return img

    def _save_rgb_image(
        self,
        filename,
        img,
        data_format,
        data_range,
        name: Optional[str] = None,
        step: Optional[int] = None,
    ):
        img = self.get_rgb_image_(img, data_format, data_range)
        cv2.imwrite(filename, img)
        if name and self._wandb_logger:
            self._wandb_logger.log_image(
                key=name, images=[self.get_save_path(filename)], step=step
            )

    def save_rgb_image(
        self,
        filename,
        img,
        data_format=DEFAULT_RGB_KWARGS["data_format"],
        data_range=DEFAULT_RGB_KWARGS["data_range"],
        name: Optional[str] = None,
        step: Optional[int] = None,
    ) -> str:
        save_path = self.get_save_path(filename)
        self._save_rgb_image(save_path, img, data_format, data_range, name, step)
        return save_path

    def get_uv_image_(self, img, data_format, data_range, cmap):
        img = self.convert_data(img)
        assert data_format in ["CHW", "HWC"]
        if data_format == "CHW":
            img = img.transpose(1, 2, 0)
        img = img.clip(min=data_range[0], max=data_range[1])
        img = (img - data_range[0]) / (data_range[1] - data_range[0])
        assert cmap in ["checkerboard", "color"]
        if cmap == "checkerboard":
            n_grid = 64
            mask = (img * n_grid).astype(int)
            mask = (mask[..., 0] + mask[..., 1]) % 2 == 0
            img = np.ones((img.shape[0], img.shape[1], 3), dtype=np.uint8) * 255
            img[mask] = np.array([255, 0, 255], dtype=np.uint8)
            img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        elif cmap == "color":
            img_ = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
            img_[..., 0] = (img[..., 0] * 255).astype(np.uint8)
            img_[..., 1] = (img[..., 1] * 255).astype(np.uint8)
            img_ = cv2.cvtColor(img_, cv2.COLOR_RGB2BGR)
            img = img_
        return img

    def save_uv_image(
        self,
        filename,
        img,
        data_format=DEFAULT_UV_KWARGS["data_format"],
        data_range=DEFAULT_UV_KWARGS["data_range"],
        cmap=DEFAULT_UV_KWARGS["cmap"],
    ) -> str:
        save_path = self.get_save_path(filename)
        img = self.get_uv_image_(img, data_format, data_range, cmap)
        cv2.imwrite(save_path, img)
        return save_path

    def get_grayscale_image_(self, img, data_range, cmap):
        img = self.convert_data(img)
        img = np.nan_to_num(img)
        if data_range is None:
            img = (img - img.min()) / (img.max() - img.min())
        else:
            img = img.clip(data_range[0], data_range[1])
            img = (img - data_range[0]) / (data_range[1] - data_range[0])
        assert cmap in [None, "jet", "magma", "spectral"]
        if cmap == None:
            img = (img * 255.0).astype(np.uint8)
            img = np.repeat(img[..., None], 3, axis=2)
        elif cmap == "jet":
            img = (img * 255.0).astype(np.uint8)
            img = cv2.applyColorMap(img, cv2.COLORMAP_JET)
        elif cmap == "magma":
            img = 1.0 - img
            base = cm.get_cmap("magma")
            num_bins = 256
            colormap = LinearSegmentedColormap.from_list(
                f"{base.name}{num_bins}", base(np.linspace(0, 1, num_bins)), num_bins
            )(np.linspace(0, 1, num_bins))[:, :3]
            a = np.floor(img * 255.0)
            b = (a + 1).clip(max=255.0)
            f = img * 255.0 - a
            a = a.astype(np.uint16).clip(0, 255)
            b = b.astype(np.uint16).clip(0, 255)
            img = colormap[a] + (colormap[b] - colormap[a]) * f[..., None]
            img = (img * 255.0).astype(np.uint8)
        elif cmap == "spectral":
            colormap = plt.get_cmap("Spectral")

            def blend_rgba(image):
                image = image[..., :3] * image[..., -1:] + (
                    1.0 - image[..., -1:]
                )  # blend A to RGB
                return image

            img = colormap(img)
            img = blend_rgba(img)
            img = (img * 255).astype(np.uint8)
            img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        return img

    def _save_grayscale_image(
        self,
        filename,
        img,
        data_range,
        cmap,
        name: Optional[str] = None,
        step: Optional[int] = None,
    ):
        img = self.get_grayscale_image_(img, data_range, cmap)
        cv2.imwrite(filename, img)
        if name and self._wandb_logger:
            self._wandb_logger.log_image(
                key=name, images=[self.get_save_path(filename)], step=step
            )

    def save_grayscale_image(
        self,
        filename,
        img,
        data_range=DEFAULT_GRAYSCALE_KWARGS["data_range"],
        cmap=DEFAULT_GRAYSCALE_KWARGS["cmap"],
        name: Optional[str] = None,
        step: Optional[int] = None,
    ) -> str:
        save_path = self.get_save_path(filename)
        self._save_grayscale_image(save_path, img, data_range, cmap, name, step)
        return save_path

    def get_image_grid_(self, imgs, align):
        if isinstance(imgs[0], list):
            return np.concatenate(
                [self.get_image_grid_(row, align) for row in imgs], axis=0
            )
        cols = []
        for col in imgs:
            assert col["type"] in ["rgb", "uv", "grayscale"]
            if col["type"] == "rgb":
                rgb_kwargs = self.DEFAULT_RGB_KWARGS.copy()
                rgb_kwargs.update(col["kwargs"])
                cols.append(self.get_rgb_image_(col["img"], **rgb_kwargs))
            elif col["type"] == "uv":
                uv_kwargs = self.DEFAULT_UV_KWARGS.copy()
                uv_kwargs.update(col["kwargs"])
                cols.append(self.get_uv_image_(col["img"], **uv_kwargs))
            elif col["type"] == "grayscale":
                grayscale_kwargs = self.DEFAULT_GRAYSCALE_KWARGS.copy()
                grayscale_kwargs.update(col["kwargs"])
                cols.append(self.get_grayscale_image_(col["img"], **grayscale_kwargs))

        if align == "max":
            h = max([col.shape[0] for col in cols])
        elif align == "min":
            h = min([col.shape[0] for col in cols])
        elif isinstance(align, int):
            h = align
        else:
            raise ValueError(
                f"Unsupported image grid align: {align}, should be min, max, or int"
            )

        for i in range(len(cols)):
            if cols[i].shape[0] != h:
                w = int(cols[i].shape[1] * h / cols[i].shape[0])
                cols[i] = cv2.resize(cols[i], (w, h), interpolation=cv2.INTER_CUBIC)
        return np.concatenate(cols, axis=1)

    def save_image_grid(
        self,
        filename,
        imgs,
        align=DEFAULT_GRID_KWARGS["align"],
        name: Optional[str] = None,
        step: Optional[int] = None,
        texts: Optional[List[float]] = None,
    ):
        save_path = self.get_save_path(filename)
        img = self.get_image_grid_(imgs, align=align)

        if texts is not None:
            img = Image.fromarray(img)
            draw = ImageDraw.Draw(img)
            black, white = (0, 0, 0), (255, 255, 255)
            for i, text in enumerate(texts):
                draw.text((2, (img.size[1] // len(texts)) * i + 1), f"{text}", white)
                draw.text((0, (img.size[1] // len(texts)) * i + 1), f"{text}", white)
                draw.text((2, (img.size[1] // len(texts)) * i - 1), f"{text}", white)
                draw.text((0, (img.size[1] // len(texts)) * i - 1), f"{text}", white)
                draw.text((1, (img.size[1] // len(texts)) * i), f"{text}", black)
            img = np.asarray(img)

        cv2.imwrite(save_path, img)
        if name and self._wandb_logger:
            self._wandb_logger.log_image(key=name, images=[save_path], step=step)
        return save_path

    def save_image(self, filename, img) -> str:
        save_path = self.get_save_path(filename)
        img = self.convert_data(img)
        assert img.dtype == np.uint8 or img.dtype == np.uint16
        if img.ndim == 3 and img.shape[-1] == 3:
            img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        elif img.ndim == 3 and img.shape[-1] == 4:
            img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
        cv2.imwrite(save_path, img)
        return save_path

    def save_cubemap(self, filename, img, data_range=(0, 1), rgba=False) -> str:
        save_path = self.get_save_path(filename)
        img = self.convert_data(img)
        assert img.ndim == 4 and img.shape[0] == 6 and img.shape[1] == img.shape[2]

        imgs_full = []
        for start in range(0, img.shape[-1], 3):
            img_ = img[..., start : start + 3]
            img_ = np.stack(
                [
                    self.get_rgb_image_(img_[i], "HWC", data_range, rgba=rgba)
                    for i in range(img_.shape[0])
                ],
                axis=0,
            )
            size = img_.shape[1]
            placeholder = np.zeros((size, size, 3), dtype=np.float32)
            img_full = np.concatenate(
                [
                    np.concatenate(
                        [placeholder, img_[2], placeholder, placeholder], axis=1
                    ),
                    np.concatenate([img_[1], img_[4], img_[0], img_[5]], axis=1),
                    np.concatenate(
                        [placeholder, img_[3], placeholder, placeholder], axis=1
                    ),
                ],
                axis=0,
            )
            imgs_full.append(img_full)

        imgs_full = np.concatenate(imgs_full, axis=1)
        cv2.imwrite(save_path, imgs_full)
        return save_path

    def save_data(self, filename, data) -> str:
        data = self.convert_data(data)
        if isinstance(data, dict):
            if not filename.endswith(".npz"):
                filename += ".npz"
            save_path = self.get_save_path(filename)
            np.savez(save_path, **data)
        else:
            if not filename.endswith(".npy"):
                filename += ".npy"
            save_path = self.get_save_path(filename)
            np.save(save_path, data)
        return save_path

    def save_state_dict(self, filename, data) -> str:
        save_path = self.get_save_path(filename)
        torch.save(data, save_path)
        return save_path

    def save_img_sequence(
        self,
        filename,
        img_dir,
        matcher,
        save_format="mp4",
        fps=30,
        name: Optional[str] = None,
        step: Optional[int] = None,
    ) -> str:
        assert save_format in ["gif", "mp4"]
        if not filename.endswith(save_format):
            filename += f".{save_format}"
        save_path = self.get_save_path(filename)
        matcher = re.compile(matcher)
        img_dir = os.path.join(self.get_save_dir(), img_dir)
        imgs = []
        for f in os.listdir(img_dir):
            if matcher.search(f):
                imgs.append(f)
        imgs = sorted(imgs, key=lambda f: int(matcher.search(f).groups()[0]))
        imgs = [cv2.imread(os.path.join(img_dir, f)) for f in imgs]

        if save_format == "gif":
            imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs]
            imageio.mimsave(save_path, imgs, fps=fps, palettesize=256)
        elif save_format == "mp4":
            imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs]
            imageio.mimsave(save_path, imgs, fps=fps)
        if name and self._wandb_logger:
            from .core import warn

            warn("Wandb logger does not support video logging yet!")
        return save_path

    def save_img_sequences(
        self,
        seq_dir,
        matcher,
        save_format="mp4",
        fps=30,
        delete=True,
        name: Optional[str] = None,
        step: Optional[int] = None,
    ):
        seq_dir_ = os.path.join(self.get_save_dir(), seq_dir)
        for f in os.listdir(seq_dir_):
            img_dir_ = os.path.join(seq_dir_, f)
            if not os.path.isdir(img_dir_):
                continue
            try:
                self.save_img_sequence(
                    os.path.join(seq_dir, f),
                    os.path.join(seq_dir, f),
                    matcher,
                    save_format=save_format,
                    fps=fps,
                    name=f"{name}_{f}",
                    step=step,
                )
                if delete:
                    shutil.rmtree(img_dir_)
            except:
                from .core import warn

                warn(f"Video saving for directory {seq_dir_} failed!")

    def save_file(self, filename, src_path, delete=False) -> str:
        save_path = self.get_save_path(filename)
        shutil.copyfile(src_path, save_path)
        if delete:
            os.remove(src_path)
        return save_path

    def save_json(self, filename, payload) -> str:
        save_path = self.get_save_path(filename)
        with open(save_path, "w") as f:
            f.write(json.dumps(payload))
        return save_path