ReubenSun's picture
1
2ac1c2d
# -------------------------------------------------------------------------------------------------------------------------------------
# Following code curated for Bio-Diffusion (https://github.com/BioinfoMachineLearning/bio-diffusion):
# -------------------------------------------------------------------------------------------------------------------------------------
import torch
import os
import os.path
import warnings
import pytorch_lightning as pl
from torch import Tensor
from pytorch_lightning import Callback
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_warn, rank_zero_info
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.types import STEP_OUTPUT
from typing import Any, Dict, List, Optional
try:
import amp_C
apex_available = True
except Exception:
apex_available = False
class EMA(Callback):
"""
Implements Exponential Moving Averaging (EMA).
When training a model, this callback will maintain moving averages of the trained parameters.
When evaluating, we use the moving averages copy of the trained parameters.
When saving, we save an additional set of parameters with the prefix `ema`.
Args:
decay: The exponential decay used when calculating the moving average. Has to be between 0-1.
apply_ema_every_n_steps: Apply EMA every n global steps.
start_step: Start applying EMA from ``start_step`` global step onwards.
save_ema_weights_in_callback_state: Enable saving EMA weights in callback state.
evaluate_ema_weights_instead: Validate the EMA weights instead of the original weights.
Note this means that when saving the model, the validation metrics are calculated with the EMA weights.
Adapted from: https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/common/callbacks/ema.py
"""
def __init__(
self,
decay: float = 0.999,
apply_ema_every_n_steps: int = 1,
start_step: int = 0,
# else .ckpt will save a model weights copy in key 'callback'
save_ema_weights_in_callback_state: bool = False,
evaluate_ema_weights_instead: bool = True,
):
if not apex_available:
rank_zero_warn(
"EMA has better performance when Apex is installed: https://github.com/NVIDIA/apex#installation."
)
if not (0 <= decay <= 1):
raise MisconfigurationException("EMA decay value must be between 0 and 1")
self._ema_model_weights: Optional[List[torch.Tensor]] = None
self._overflow_buf: Optional[torch.Tensor] = None
self._cur_step: Optional[int] = None
self._weights_buffer: Optional[List[torch.Tensor]] = None
self.apply_ema_every_n_steps = apply_ema_every_n_steps
self.start_step = start_step
self.save_ema_weights_in_callback_state = save_ema_weights_in_callback_state
self.evaluate_ema_weights_instead = evaluate_ema_weights_instead
self.decay = decay
def on_train_start(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule"
) -> None:
rank_zero_info("Creating EMA weights copy.")
if self._ema_model_weights is None:
self._ema_model_weights = [
p.detach().clone() for p in pl_module.state_dict().values()
]
# ensure that all the weights are on the correct device
self._ema_model_weights = [
p.to(pl_module.device) for p in self._ema_model_weights
]
self._overflow_buf = torch.IntTensor([0]).to(pl_module.device)
def ema(self, pl_module: "pl.LightningModule") -> None:
if apex_available and pl_module.device.type == "cuda":
return self.apply_multi_tensor_ema(pl_module)
return self.apply_ema(pl_module)
def apply_multi_tensor_ema(self, pl_module: "pl.LightningModule") -> None:
model_weights = list(pl_module.state_dict().values())
amp_C.multi_tensor_axpby(
65536,
self._overflow_buf,
[self._ema_model_weights, model_weights, self._ema_model_weights],
self.decay,
1 - self.decay,
-1,
)
def apply_ema(self, pl_module: "pl.LightningModule") -> None:
for orig_weight, ema_weight in zip(
list(pl_module.state_dict().values()), self._ema_model_weights
):
if (
ema_weight.data.dtype != torch.long
and orig_weight.data.dtype != torch.long
):
# ensure that non-trainable parameters (e.g., feature distributions) are not included in EMA weight averaging
diff = ema_weight.data - orig_weight.data
diff.mul_(1.0 - self.decay)
ema_weight.sub_(diff)
def should_apply_ema(self, step: int) -> bool:
return (
step != self._cur_step
and step >= self.start_step
and step % self.apply_ema_every_n_steps == 0
)
def on_train_batch_end(
self,
trainer: "pl.Trainer",
pl_module: "pl.LightningModule",
outputs: STEP_OUTPUT,
batch: Any,
batch_idx: int,
) -> None:
if self.should_apply_ema(trainer.global_step):
self._cur_step = trainer.global_step
self.ema(pl_module)
def state_dict(self) -> Dict[str, Any]:
if self.save_ema_weights_in_callback_state:
return dict(cur_step=self._cur_step, ema_weights=self._ema_model_weights)
return dict(cur_step=self._cur_step)
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
self._cur_step = state_dict["cur_step"]
# when loading within apps such as NeMo, EMA weights will be loaded by the experiment manager separately
if self._ema_model_weights is None:
self._ema_model_weights = state_dict.get("ema_weights")
def on_load_checkpoint(
self,
trainer: "pl.Trainer",
pl_module: "pl.LightningModule",
checkpoint: Dict[str, Any],
) -> None:
checkpoint_callback = trainer.checkpoint_callback
if trainer.ckpt_path and checkpoint_callback is not None:
ext = checkpoint_callback.FILE_EXTENSION
if trainer.ckpt_path.endswith(f"-EMA{ext}"):
rank_zero_info(
"loading EMA based weights. "
"The callback will treat the loaded EMA weights as the main weights"
" and create a new EMA copy when training."
)
return
ema_path = trainer.ckpt_path.replace(ext, f"-EMA{ext}")
if os.path.exists(ema_path):
ema_state_dict = torch.load(ema_path, map_location=torch.device("cpu"))
self._ema_model_weights = ema_state_dict["state_dict"].values()
del ema_state_dict
rank_zero_info(
"EMA weights have been loaded successfully. Continuing training with saved EMA weights."
)
else:
warnings.warn(
"we were unable to find the associated EMA weights when re-loading, "
"training will start with new EMA weights.",
UserWarning,
)
def replace_model_weights(self, pl_module: "pl.LightningModule") -> None:
self._weights_buffer = [
p.detach().clone().to("cpu") for p in pl_module.state_dict().values()
]
new_state_dict = {
k: v for k, v in zip(pl_module.state_dict().keys(), self._ema_model_weights)
}
pl_module.load_state_dict(new_state_dict)
def restore_original_weights(self, pl_module: "pl.LightningModule") -> None:
state_dict = pl_module.state_dict()
new_state_dict = {k: v for k, v in zip(state_dict.keys(), self._weights_buffer)}
pl_module.load_state_dict(new_state_dict)
del self._weights_buffer
@property
def ema_initialized(self) -> bool:
return self._ema_model_weights is not None
def on_validation_start(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule"
) -> None:
if self.ema_initialized and self.evaluate_ema_weights_instead:
self.replace_model_weights(pl_module)
def on_validation_end(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule"
) -> None:
if self.ema_initialized and self.evaluate_ema_weights_instead:
self.restore_original_weights(pl_module)
def on_test_start(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule"
) -> None:
if self.ema_initialized and self.evaluate_ema_weights_instead:
self.replace_model_weights(pl_module)
def on_test_end(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule"
) -> None:
if self.ema_initialized and self.evaluate_ema_weights_instead:
self.restore_original_weights(pl_module)
class EMAModelCheckpoint(ModelCheckpoint):
"""
Light wrapper around Lightning's `ModelCheckpoint` to, upon request, save an EMA copy of the model as well.
Adapted from: https://github.com/NVIDIA/NeMo/blob/be0804f61e82dd0f63da7f9fe8a4d8388e330b18/nemo/utils/exp_manager.py#L744
"""
def __init__(self, **kwargs):
# call the parent class constructor with the provided kwargs
super().__init__(**kwargs)
def _get_ema_callback(self, trainer: "pl.Trainer") -> Optional[EMA]:
ema_callback = None
for callback in trainer.callbacks:
if isinstance(callback, EMA):
ema_callback = callback
return ema_callback
def _save_checkpoint(self, trainer: "pl.Trainer", filepath: str) -> None:
super()._save_checkpoint(trainer, filepath)
ema_callback = self._get_ema_callback(trainer)
if ema_callback is not None:
# save EMA copy of the model as well
ema_callback.replace_model_weights(trainer.lightning_module)
filepath = self._ema_format_filepath(filepath)
if self.verbose:
rank_zero_info(f"Saving EMA weights to separate checkpoint {filepath}")
os.makedirs(os.path.dirname(filepath), exist_ok=True)
super()._save_checkpoint(trainer, filepath)
ema_callback.restore_original_weights(trainer.lightning_module)
def _ema_format_filepath(self, filepath: str) -> str:
return filepath.replace(self.FILE_EXTENSION, f"-EMA{self.FILE_EXTENSION}")
# only change the last line
def _update_best_and_save(
self,
current: Tensor,
trainer: "pl.Trainer",
monitor_candidates: Dict[str, Tensor],
) -> None:
k = len(self.best_k_models) + 1 if self.save_top_k == -1 else self.save_top_k
del_filepath = None
if len(self.best_k_models) == k and k > 0:
del_filepath = self.kth_best_model_path
self.best_k_models.pop(del_filepath)
# do not save nan, replace with +/- inf
if isinstance(current, Tensor) and torch.isnan(current):
current = torch.tensor(
float("inf" if self.mode == "min" else "-inf"), device=current.device
)
filepath = self._get_metric_interpolated_filepath_name(
monitor_candidates, trainer, del_filepath
)
# save the current score
self.current_score = current
self.best_k_models[filepath] = current
if len(self.best_k_models) == k:
# monitor dict has reached k elements
_op = max if self.mode == "min" else min
self.kth_best_model_path = _op(self.best_k_models, key=self.best_k_models.get) # type: ignore[arg-type]
self.kth_value = self.best_k_models[self.kth_best_model_path]
_op = min if self.mode == "min" else max
self.best_model_path = _op(self.best_k_models, key=self.best_k_models.get) # type: ignore[arg-type]
self.best_model_score = self.best_k_models[self.best_model_path]
if self.verbose:
epoch = monitor_candidates["epoch"]
step = monitor_candidates["step"]
rank_zero_info(
f"Epoch {epoch:d}, global step {step:d}: {self.monitor!r} reached {current:0.5f}"
f" (best {self.best_model_score:0.5f}), saving model to {filepath!r} as top {k}"
)
self._save_checkpoint(trainer, filepath)
if del_filepath is not None and filepath != del_filepath:
self._remove_checkpoint(trainer, del_filepath)
self._remove_checkpoint(
trainer,
del_filepath.replace(self.FILE_EXTENSION, f"-EMA{self.FILE_EXTENSION}"),
)