ReubenSun's picture
1
2ac1c2d
import math
from collections import defaultdict
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
from torch.cuda.amp import custom_bwd, custom_fwd
from .core import debug, find, info, warn
from .typing import *
def dot(x, y):
return torch.sum(x * y, -1, keepdim=True)
def reflect(x, n):
return 2 * dot(x, n) * n - x
ValidScale = Union[Tuple[float, float], Num[Tensor, "2 D"]]
def scale_tensor(
dat: Num[Tensor, "... D"], inp_scale: ValidScale, tgt_scale: ValidScale
):
if inp_scale is None:
inp_scale = (0, 1)
if tgt_scale is None:
tgt_scale = (0, 1)
if isinstance(tgt_scale, Tensor):
assert dat.shape[-1] == tgt_scale.shape[-1]
dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0])
dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0]
return dat
class _TruncExp(Function): # pylint: disable=abstract-method
# Implementation from torch-ngp:
# https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, x): # pylint: disable=arguments-differ
ctx.save_for_backward(x)
return torch.exp(x)
@staticmethod
@custom_bwd
def backward(ctx, g): # pylint: disable=arguments-differ
x = ctx.saved_tensors[0]
return g * torch.exp(torch.clamp(x, max=15))
trunc_exp = _TruncExp.apply
def get_activation(name) -> Callable:
if name is None:
return lambda x: x
name = name.lower()
if name == "none":
return lambda x: x
elif name == "lin2srgb":
return lambda x: torch.where(
x > 0.0031308,
torch.pow(torch.clamp(x, min=0.0031308), 1.0 / 2.4) * 1.055 - 0.055,
12.92 * x,
).clamp(0.0, 1.0)
elif name == "exp":
return lambda x: torch.exp(x)
elif name == "shifted_exp":
return lambda x: torch.exp(x - 1.0)
elif name == "trunc_exp":
return trunc_exp
elif name == "shifted_trunc_exp":
return lambda x: trunc_exp(x - 1.0)
elif name == "sigmoid":
return lambda x: torch.sigmoid(x)
elif name == "tanh":
return lambda x: torch.tanh(x)
elif name == "shifted_softplus":
return lambda x: F.softplus(x - 1.0)
elif name == "scale_-11_01":
return lambda x: x * 0.5 + 0.5
elif name == "negative":
return lambda x: -x
else:
try:
return getattr(F, name)
except AttributeError:
raise ValueError(f"Unknown activation function: {name}")
def chunk_batch(func: Callable, chunk_size: int, *args, **kwargs) -> Any:
if chunk_size <= 0:
return func(*args, **kwargs)
B = None
for arg in list(args) + list(kwargs.values()):
if isinstance(arg, torch.Tensor):
B = arg.shape[0]
break
assert (
B is not None
), "No tensor found in args or kwargs, cannot determine batch size."
out = defaultdict(list)
out_type = None
# max(1, B) to support B == 0
for i in range(0, max(1, B), chunk_size):
out_chunk = func(
*[
arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for arg in args
],
**{
k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
for k, arg in kwargs.items()
},
)
if out_chunk is None:
continue
out_type = type(out_chunk)
if isinstance(out_chunk, torch.Tensor):
out_chunk = {0: out_chunk}
elif isinstance(out_chunk, tuple) or isinstance(out_chunk, list):
chunk_length = len(out_chunk)
out_chunk = {i: chunk for i, chunk in enumerate(out_chunk)}
elif isinstance(out_chunk, dict):
pass
else:
print(
f"Return value of func must be in type [torch.Tensor, list, tuple, dict], get {type(out_chunk)}."
)
exit(1)
for k, v in out_chunk.items():
v = v if torch.is_grad_enabled() else v.detach()
out[k].append(v)
if out_type is None:
return None
out_merged: Dict[Any, Optional[torch.Tensor]] = {}
for k, v in out.items():
if all([vv is None for vv in v]):
# allow None in return value
out_merged[k] = None
elif all([isinstance(vv, torch.Tensor) for vv in v]):
out_merged[k] = torch.cat(v, dim=0)
else:
raise TypeError(
f"Unsupported types in return value of func: {[type(vv) for vv in v if not isinstance(vv, torch.Tensor)]}"
)
if out_type is torch.Tensor:
return out_merged[0]
elif out_type in [tuple, list]:
return out_type([out_merged[i] for i in range(chunk_length)])
elif out_type is dict:
return out_merged
def get_ray_directions(
H: int,
W: int,
focal: Union[float, Tuple[float, float]],
principal: Optional[Tuple[float, float]] = None,
use_pixel_centers: bool = True,
normalize: bool = True,
) -> Float[Tensor, "H W 3"]:
"""
Get ray directions for all pixels in camera coordinate.
Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
ray-tracing-generating-camera-rays/standard-coordinate-systems
Inputs:
H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers
Outputs:
directions: (H, W, 3), the direction of the rays in camera coordinate
"""
pixel_center = 0.5 if use_pixel_centers else 0
if isinstance(focal, float):
fx, fy = focal, focal
cx, cy = W / 2, H / 2
else:
fx, fy = focal
assert principal is not None
cx, cy = principal
i, j = torch.meshgrid(
torch.arange(W, dtype=torch.float32) + pixel_center,
torch.arange(H, dtype=torch.float32) + pixel_center,
indexing="xy",
)
directions: Float[Tensor, "H W 3"] = torch.stack(
[(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1
)
if normalize:
directions = F.normalize(directions, dim=-1)
return directions
def get_rays(
directions: Float[Tensor, "... 3"],
c2w: Float[Tensor, "... 4 4"],
keepdim=False,
noise_scale=0.0,
normalize=False,
) -> Tuple[Float[Tensor, "... 3"], Float[Tensor, "... 3"]]:
# Rotate ray directions from camera coordinate to the world coordinate
assert directions.shape[-1] == 3
if directions.ndim == 2: # (N_rays, 3)
if c2w.ndim == 2: # (4, 4)
c2w = c2w[None, :, :]
assert c2w.ndim == 3 # (N_rays, 4, 4) or (1, 4, 4)
rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1) # (N_rays, 3)
rays_o = c2w[:, :3, 3].expand(rays_d.shape)
elif directions.ndim == 3: # (H, W, 3)
assert c2w.ndim in [2, 3]
if c2w.ndim == 2: # (4, 4)
rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum(
-1
) # (H, W, 3)
rays_o = c2w[None, None, :3, 3].expand(rays_d.shape)
elif c2w.ndim == 3: # (B, 4, 4)
rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
-1
) # (B, H, W, 3)
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
elif directions.ndim == 4: # (B, H, W, 3)
assert c2w.ndim == 3 # (B, 4, 4)
rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
-1
) # (B, H, W, 3)
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
# add camera noise to avoid grid-like artifect
# https://github.com/ashawkey/stable-dreamfusion/blob/49c3d4fa01d68a4f027755acf94e1ff6020458cc/nerf/utils.py#L373
if noise_scale > 0:
rays_o = rays_o + torch.randn(3, device=rays_o.device) * noise_scale
rays_d = rays_d + torch.randn(3, device=rays_d.device) * noise_scale
if normalize:
rays_d = F.normalize(rays_d, dim=-1)
if not keepdim:
rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3)
return rays_o, rays_d
def get_projection_matrix(
fovy: Union[float, Float[Tensor, "B"]], aspect_wh: float, near: float, far: float
) -> Float[Tensor, "*B 4 4"]:
if isinstance(fovy, float):
proj_mtx = torch.zeros(4, 4, dtype=torch.float32)
proj_mtx[0, 0] = 1.0 / (math.tan(fovy / 2.0) * aspect_wh)
proj_mtx[1, 1] = -1.0 / math.tan(
fovy / 2.0
) # add a negative sign here as the y axis is flipped in nvdiffrast output
proj_mtx[2, 2] = -(far + near) / (far - near)
proj_mtx[2, 3] = -2.0 * far * near / (far - near)
proj_mtx[3, 2] = -1.0
else:
batch_size = fovy.shape[0]
proj_mtx = torch.zeros(batch_size, 4, 4, dtype=torch.float32)
proj_mtx[:, 0, 0] = 1.0 / (torch.tan(fovy / 2.0) * aspect_wh)
proj_mtx[:, 1, 1] = -1.0 / torch.tan(
fovy / 2.0
) # add a negative sign here as the y axis is flipped in nvdiffrast output
proj_mtx[:, 2, 2] = -(far + near) / (far - near)
proj_mtx[:, 2, 3] = -2.0 * far * near / (far - near)
proj_mtx[:, 3, 2] = -1.0
return proj_mtx
def get_mvp_matrix(
c2w: Float[Tensor, "*B 4 4"], proj_mtx: Float[Tensor, "*B 4 4"]
) -> Float[Tensor, "*B 4 4"]:
# calculate w2c from c2w: R' = Rt, t' = -Rt * t
# mathematically equivalent to (c2w)^-1
if c2w.ndim == 2:
assert proj_mtx.ndim == 2
w2c: Float[Tensor, "4 4"] = torch.zeros(4, 4).to(c2w)
w2c[:3, :3] = c2w[:3, :3].permute(1, 0)
w2c[:3, 3:] = -c2w[:3, :3].permute(1, 0) @ c2w[:3, 3:]
w2c[3, 3] = 1.0
else:
w2c: Float[Tensor, "B 4 4"] = torch.zeros(c2w.shape[0], 4, 4).to(c2w)
w2c[:, :3, :3] = c2w[:, :3, :3].permute(0, 2, 1)
w2c[:, :3, 3:] = -c2w[:, :3, :3].permute(0, 2, 1) @ c2w[:, :3, 3:]
w2c[:, 3, 3] = 1.0
# calculate mvp matrix by proj_mtx @ w2c (mv_mtx)
mvp_mtx = proj_mtx @ w2c
return mvp_mtx
def get_intrinsic_from_fov(fov, H, W, bs=-1):
focal_length = 0.5 * H / np.tan(0.5 * fov)
intrinsic = np.identity(3, dtype=np.float32)
intrinsic[0, 0] = focal_length
intrinsic[1, 1] = focal_length
intrinsic[0, 2] = W / 2.0
intrinsic[1, 2] = H / 2.0
if bs > 0:
intrinsic = intrinsic[None].repeat(bs, axis=0)
return torch.from_numpy(intrinsic)
def binary_cross_entropy(input, target):
"""
F.binary_cross_entropy is not numerically stable in mixed-precision training.
"""
return -(target * torch.log(input) + (1 - target) * torch.log(1 - input)).mean()
def tet_sdf_diff(
vert_sdf: Float[Tensor, "Nv 1"], tet_edges: Integer[Tensor, "Ne 2"]
) -> Float[Tensor, ""]:
sdf_f1x6x2 = vert_sdf[:, 0][tet_edges.reshape(-1)].reshape(-1, 2)
mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1])
sdf_f1x6x2 = sdf_f1x6x2[mask]
sdf_diff = F.binary_cross_entropy_with_logits(
sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()
) + F.binary_cross_entropy_with_logits(
sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float()
)
return sdf_diff
def validate_empty_rays(ray_indices, t_start, t_end):
if ray_indices.nelement() == 0:
warn("Empty rays_indices!")
ray_indices = torch.LongTensor([0]).to(ray_indices)
t_start = torch.Tensor([0]).to(ray_indices)
t_end = torch.Tensor([0]).to(ray_indices)
return ray_indices, t_start, t_end
def rays_intersect_bbox(
rays_o: Float[Tensor, "N 3"],
rays_d: Float[Tensor, "N 3"],
radius: Float,
near: Float = 0.0,
valid_thresh: Float = 0.01,
background: bool = False,
):
input_shape = rays_o.shape[:-1]
rays_o, rays_d = rays_o.view(-1, 3), rays_d.view(-1, 3)
rays_d_valid = torch.where(
rays_d.abs() < 1e-6, torch.full_like(rays_d, 1e-6), rays_d
)
if type(radius) in [int, float]:
radius = torch.FloatTensor(
[[-radius, radius], [-radius, radius], [-radius, radius]]
).to(rays_o.device)
radius = (
1.0 - 1.0e-3
) * radius # tighten the radius to make sure the intersection point lies in the bounding box
interx0 = (radius[..., 1] - rays_o) / rays_d_valid
interx1 = (radius[..., 0] - rays_o) / rays_d_valid
t_near = torch.minimum(interx0, interx1).amax(dim=-1).clamp_min(near)
t_far = torch.maximum(interx0, interx1).amin(dim=-1)
# check wheter a ray intersects the bbox or not
rays_valid = t_far - t_near > valid_thresh
t_near_valid, t_far_valid = t_near[rays_valid], t_far[rays_valid]
global_near = t_near_valid.min().item()
global_far = t_far_valid.max().item()
t_near[torch.where(~rays_valid)] = 0.0
t_far[torch.where(~rays_valid)] = 0.0
t_near = t_near.view(*input_shape, 1)
t_far = t_far.view(*input_shape, 1)
rays_valid = rays_valid.view(*input_shape)
return t_near, t_far, rays_valid
def get_plucker_rays(
rays_o: Float[Tensor, "*N 3"], rays_d: Float[Tensor, "*N 3"]
) -> Float[Tensor, "*N 6"]:
rays_o = F.normalize(rays_o, dim=-1)
rays_d = F.normalize(rays_d, dim=-1)
return torch.cat([rays_o.cross(rays_d), rays_d], dim=-1)
def c2w_to_polar(c2w: Float[Tensor, "4 4"]) -> Tuple[float, float, float]:
cam_pos = c2w[:3, 3]
x, y, z = cam_pos.tolist()
distance = cam_pos.norm().item()
elevation = math.asin(z / distance)
if abs(x) < 1.0e-5 and abs(y) < 1.0e-5:
azimuth = 0
else:
azimuth = math.atan2(y, x)
if azimuth < 0:
azimuth += 2 * math.pi
return elevation, azimuth, distance
def polar_to_c2w(
elevation: float, azimuth: float, distance: float
) -> Float[Tensor, "4 4"]:
"""
Compute L = p - C.
Normalize L.
Compute s = L x u. (cross product)
Normalize s.
Compute u' = s x L.
rotation = [s, u, -l]
"""
z = distance * math.sin(elevation)
x = distance * math.cos(elevation) * math.cos(azimuth)
y = distance * math.cos(elevation) * math.sin(azimuth)
l = -torch.as_tensor([x, y, z]).float()
l = F.normalize(l, dim=0)
u = torch.as_tensor([0.0, 0.0, 1.0]).float()
s = l.cross(u)
s = F.normalize(s, dim=0)
u = s.cross(l)
rot = torch.stack([s, u, -l], dim=0).T
c2w = torch.zeros((4, 4), dtype=torch.float32)
c2w[:3, :3] = rot
c2w[:3, 3] = torch.as_tensor([x, y, z])
c2w[3, 3] = 1
return c2w
def fourier_position_encoding(x, n_freq: int, dim: int):
assert n_freq > 0
input_shape = x.shape
input_ndim = x.ndim
if dim < 0:
dim = input_ndim + dim
bands = 2 ** torch.arange(n_freq, dtype=x.dtype, device=x.device)
for i in range(dim + 1):
bands = bands.unsqueeze(0)
for i in range(input_ndim - dim - 1):
bands = bands.unsqueeze(-1)
x = x.view(*input_shape[: dim + 1], 1, *input_shape[dim + 1 :])
x = torch.cat(
[
torch.sin(bands * x).reshape(
*input_shape[:dim], -1, *input_shape[dim + 1 :]
),
torch.cos(bands * x).reshape(
*input_shape[:dim], -1, *input_shape[dim + 1 :]
),
],
dim=dim,
)
return x