import torch import pytorch3d from pytorch3d.io import load_objs_as_meshes, load_obj, save_obj, IO from pytorch3d.structures import Meshes from pytorch3d.renderer import ( look_at_view_transform, FoVPerspectiveCameras, FoVOrthographicCameras, AmbientLights, PointLights, DirectionalLights, Materials, RasterizationSettings, MeshRenderer, MeshRasterizer, TexturesUV, ) from .geometry import HardGeometryShader from .shader import HardNChannelFlatShader from .voronoi import voronoi_solve import torch.nn.functional as F import open3d as o3d import pdb import kaolin as kal import numpy as np import torch from pytorch3d.renderer.cameras import FoVOrthographicCameras from typing import Any, Dict, List, Optional, Sequence, Tuple, Union from pytorch3d.common.datatypes import Device import math import torch.nn.functional as F from trimesh import Trimesh from pytorch3d.structures import Meshes import os LIST_TYPE = Union[list, np.ndarray, torch.Tensor] _R = torch.eye(3)[None] # (1, 3, 3) _T = torch.zeros(1, 3) # (1, 3) _BatchFloatType = Union[float, Sequence[float], torch.Tensor] class CustomOrthographicCameras(FoVOrthographicCameras): def compute_projection_matrix( self, znear, zfar, max_x, min_x, max_y, min_y, scale_xyz ) -> torch.Tensor: """ 自定义正交投影矩阵计算,继承并修改深度通道参数 参数维度说明: - znear/zfar: (N,) - max_x/min_x: (N,) - max_y/min_y: (N,) - scale_xyz: (N, 3) """ K = torch.zeros((self._N, 4, 4), dtype=torch.float32, device=self.device) ones = torch.ones((self._N), dtype=torch.float32, device=self.device) # NOTE: OpenGL flips handedness of coordinate system between camera # space and NDC space so z sign is -ve. In PyTorch3D we maintain a # right handed coordinate system throughout. z_sign = +1.0 K[:, 0, 0] = (2.0 / (max_x - min_x)) * scale_xyz[:, 0] K[:, 1, 1] = (2.0 / (max_y - min_y)) * scale_xyz[:, 1] K[:, 0, 3] = -(max_x + min_x) / (max_x - min_x) K[:, 1, 3] = -(max_y + min_y) / (max_y - min_y) K[:, 3, 3] = ones # NOTE: This maps the z coordinate to the range [0, 1] and replaces the # the OpenGL z normalization to [-1, 1] K[:, 2, 2] = -2 * (1.0 / (zfar - znear)) * scale_xyz[:, 2] K[:, 2, 3] = -(znear + zfar) / (zfar - znear) return K def __init__( self, znear: _BatchFloatType = 1.0, zfar: _BatchFloatType = 100.0, max_y: _BatchFloatType = 1.0, min_y: _BatchFloatType = -1.0, max_x: _BatchFloatType = 1.0, min_x: _BatchFloatType = -1.0, scale_xyz=((1.0, 1.0, 1.0),), # (N, 3) R: torch.Tensor = _R, T: torch.Tensor = _T, K: Optional[torch.Tensor] = None, device: Device = "cpu", ): # 继承父类初始化逻辑 super().__init__( znear=znear, zfar=zfar, max_y=max_y, min_y=min_y, max_x=max_x, min_x=min_x, scale_xyz=scale_xyz, R=R, T=T, K=K, device=device, ) def erode_torch_batch(binary_img_batch, kernel_size): pad = (kernel_size - 1) // 2 bin_img = F.pad( binary_img_batch.unsqueeze(1), pad=[pad, pad, pad, pad], mode="reflect" ) out = -F.max_pool2d(-bin_img, kernel_size=kernel_size, stride=1, padding=0) out = out.squeeze(1) return out def dilate_torch_batch(binary_img_batch, kernel_size): pad = (kernel_size - 1) // 2 bin_img = F.pad(binary_img_batch, pad=[pad, pad, pad, pad], mode="reflect") out = F.max_pool2d(bin_img, kernel_size=kernel_size, stride=1, padding=0) out = out.squeeze() return out # Pytorch3D based renderering functions, managed in a class # Render size is recommended to be the same as your latent view size # DO NOT USE "bilinear" sampling when you are handling latents. # Stable Diffusion has 4 latent channels so use channels=4 class UVProjection: def __init__( self, texture_size=96, render_size=64, sampling_mode="nearest", channels=3, device=None, ): self.channels = channels self.device = device or torch.device("cpu") self.lights = AmbientLights( ambient_color=((1.0,) * channels,), device=self.device ) self.target_size = (texture_size, texture_size) self.render_size = render_size self.sampling_mode = sampling_mode # Load obj mesh, rescale the mesh to fit into the bounding box def load_mesh(self, mesh, scale_factor=2.0, auto_center=True, autouv=False): if isinstance(mesh, Trimesh): vertices = torch.tensor(mesh.vertices, dtype=torch.float32).to(self.device) faces = torch.tensor(mesh.faces, dtype=torch.int64).to(self.device) mesh = Meshes(verts=[vertices], faces=[faces]) verts = mesh.verts_packed() mesh = mesh.update_padded(verts[None, :, :]) elif isinstance(mesh, str) and os.path.isfile(mesh): mesh = load_objs_as_meshes([mesh_path], device=self.device) if auto_center: verts = mesh.verts_packed() max_bb = (verts - 0).max(0)[0] min_bb = (verts - 0).min(0)[0] scale = (max_bb - min_bb).max() / 2 center = (max_bb + min_bb) / 2 mesh.offset_verts_(-center) mesh.scale_verts_((scale_factor / float(scale))) else: mesh.scale_verts_((scale_factor)) if autouv or (mesh.textures is None): mesh = self.uv_unwrap(mesh) self.mesh = mesh def load_glb_mesh( self, mesh_path, trimesh, scale_factor=1.0, auto_center=True, autouv=False ): from pytorch3d.io.experimental_gltf_io import MeshGlbFormat io = IO() io.register_meshes_format(MeshGlbFormat()) with open(mesh_path, "rb") as f: mesh = io.load_mesh(f, include_textures=True, device=self.device) if auto_center: verts = mesh.verts_packed() max_bb = (verts - 0).max(0)[0] min_bb = (verts - 0).min(0)[0] scale = (max_bb - min_bb).max() / 2 center = (max_bb + min_bb) / 2 mesh.offset_verts_(-center) mesh.scale_verts_((scale_factor / float(scale))) verts = mesh.verts_packed() # T = torch.tensor([[1, 0, 0], [0, 0, -1], [0, 1, 0]], device=verts.device, dtype=verts.dtype) # T = torch.tensor([[0, 0, 1], [0, 1, 0], [-1, 0, 0]], device=verts.device, dtype=verts.dtype) # verts = verts @ T mesh = mesh.update_padded(verts[None, :, :]) else: mesh.scale_verts_((scale_factor)) if autouv or (mesh.textures is None): mesh = self.uv_unwrap(mesh) self.mesh = mesh # Save obj mesh def save_mesh(self, mesh_path, texture): save_obj( mesh_path, self.mesh.verts_list()[0], self.mesh.faces_list()[0], verts_uvs=self.mesh.textures.verts_uvs_list()[0], faces_uvs=self.mesh.textures.faces_uvs_list()[0], texture_map=texture, ) # Code referred to TEXTure code (https://github.com/TEXTurePaper/TEXTurePaper.git) def uv_unwrap(self, mesh): verts_list = mesh.verts_list()[0] faces_list = mesh.faces_list()[0] import xatlas import numpy as np v_np = verts_list.cpu().numpy() f_np = faces_list.int().cpu().numpy() atlas = xatlas.Atlas() atlas.add_mesh(v_np, f_np) chart_options = xatlas.ChartOptions() chart_options.max_iterations = 4 atlas.generate(chart_options=chart_options) vmapping, ft_np, vt_np = atlas[0] # [N], [M, 3], [N, 2] vt = ( torch.from_numpy(vt_np.astype(np.float32)) .type(verts_list.dtype) .to(mesh.device) ) ft = ( torch.from_numpy(ft_np.astype(np.int64)) .type(faces_list.dtype) .to(mesh.device) ) new_map = torch.zeros(self.target_size + (self.channels,), device=mesh.device) new_tex = TexturesUV([new_map], [ft], [vt], sampling_mode=self.sampling_mode) mesh.textures = new_tex return mesh """ A functions that disconnect faces in the mesh according to its UV seams. The number of vertices are made equal to the number of unique vertices its UV layout, while the faces list is intact. """ def disconnect_faces(self): mesh = self.mesh verts_list = mesh.verts_list() faces_list = mesh.faces_list() verts_uvs_list = mesh.textures.verts_uvs_list() faces_uvs_list = mesh.textures.faces_uvs_list() packed_list = [v[f] for v, f in zip(verts_list, faces_list)] verts_disconnect_list = [ torch.zeros( (verts_uvs_list[i].shape[0], 3), dtype=verts_list[0].dtype, device=verts_list[0].device, ) for i in range(len(verts_list)) ] for i in range(len(verts_list)): verts_disconnect_list[i][faces_uvs_list] = packed_list[i] assert not mesh.has_verts_normals(), "Not implemented for vertex normals" self.mesh_d = Meshes(verts_disconnect_list, faces_uvs_list, mesh.textures) return self.mesh_d """ A function that construct a temp mesh for back-projection. Take a disconnected mesh and a rasterizer, the function calculates the projected faces as the UV, as use its original UV with pseudo z value as world space geometry. """ def construct_uv_mesh(self): mesh = self.mesh_d verts_list = mesh.verts_list() verts_uvs_list = mesh.textures.verts_uvs_list() # faces_list = [torch.flip(faces, [-1]) for faces in mesh.faces_list()] new_verts_list = [] for i, (verts, verts_uv) in enumerate(zip(verts_list, verts_uvs_list)): verts = verts.clone() verts_uv = verts_uv.clone() verts[..., 0:2] = verts_uv[..., :] verts = (verts - 0.5) * 2 verts[..., 2] *= 1 new_verts_list.append(verts) textures_uv = mesh.textures.clone() self.mesh_uv = Meshes(new_verts_list, mesh.faces_list(), textures_uv) return self.mesh_uv # Set texture for the current mesh. def set_texture_map(self, texture): new_map = texture.permute(1, 2, 0) new_map = new_map.to(self.device) new_tex = TexturesUV( [new_map], self.mesh.textures.faces_uvs_padded(), self.mesh.textures.verts_uvs_padded(), sampling_mode=self.sampling_mode, ) self.mesh.textures = new_tex # Set the initial normal noise texture # No generator here for replication of the experiment result. Add one as you wish def set_noise_texture(self, channels=None): if not channels: channels = self.channels noise_texture = torch.normal( 0, 1, (channels,) + self.target_size, device=self.device ) self.set_texture_map(noise_texture) return noise_texture # Set the cameras given the camera poses and centers def set_cameras(self, camera_poses, centers=None, camera_distance=2.7, scale=None): elev = torch.FloatTensor([pose[0] for pose in camera_poses]) azim = torch.FloatTensor([pose[1] for pose in camera_poses]) print("camera_distance:{}".format(camera_distance)) R, T = look_at_view_transform( dist=camera_distance, elev=elev, azim=azim, at=centers or ((0, 0, 0),) ) # flip_mat = torch.from_numpy(np.diag([-1.0, 1.0, -1.0]) ).type(torch.FloatTensor).to(R.device) # R = R@flip_mat # R = R.permute(0, 2, 1) # T = T*torch.from_numpy(np.array([-1.0, 1.0, -1.0])).type(torch.FloatTensor).to(R.device) # print("v R size:{}, v T size:{}".format(R.size(), T.size())) # c2w = self.get_c2w(elev, [camera_distance]*len(elev), azim) # w2c = torch.linalg.inv(c2w) # R, T= w2c[:, :3, :3], w2c[:, :3, 3] print("R size:{}, T size:{}".format(R.size(), T.size())) # self.cameras = CustomOrthographicCameras(device=self.device, R=R, T=T, scale_xyz=scale or ((1,1,1),), znear=0.1, min_x=-0.55, max_x=0.55, min_y=-0.55, max_y=0.55) self.cameras = FoVOrthographicCameras( device=self.device, R=R, T=T, scale_xyz=scale or ((1, 1, 1),) ) # Set all necessary internal data for rendering and texture baking # Can be used to refresh after changing camera positions def set_cameras_and_render_settings( self, camera_poses, centers=None, camera_distance=2.7, render_size=None, scale=None, ): self.set_cameras(camera_poses, centers, camera_distance, scale=scale) if render_size is None: render_size = self.render_size if not hasattr(self, "renderer"): self.setup_renderer(size=render_size) if not hasattr(self, "mesh_d"): self.disconnect_faces() if not hasattr(self, "mesh_uv"): self.construct_uv_mesh() self.calculate_tex_gradient() self.calculate_visible_triangle_mask() _, _, _, cos_maps, _, _ = self.render_geometry() self.calculate_cos_angle_weights(cos_maps) # Setup renderers for rendering # max faces per bin set to 30000 to avoid overflow in many test cases. # You can use default value to let pytorch3d handle that for you. def setup_renderer( self, size=64, blur=0.0, face_per_pix=1, perspective_correct=False, channels=None, ): if not channels: channels = self.channels self.raster_settings = RasterizationSettings( image_size=size, blur_radius=blur, faces_per_pixel=face_per_pix, perspective_correct=perspective_correct, cull_backfaces=True, max_faces_per_bin=30000, ) self.renderer = MeshRenderer( rasterizer=MeshRasterizer( cameras=self.cameras, raster_settings=self.raster_settings, ), shader=HardNChannelFlatShader( device=self.device, cameras=self.cameras, lights=self.lights, channels=channels, # materials=materials ), ) # Bake screen-space cosine weights to UV space # May be able to reimplement using the generic "bake_texture" function, but it works so leave it here for now @torch.enable_grad() def calculate_cos_angle_weights(self, cos_angles, fill=True, channels=None): if not channels: channels = self.channels cos_maps = [] tmp_mesh = self.mesh.clone() for i in range(len(self.cameras)): zero_map = torch.zeros( self.target_size + (channels,), device=self.device, requires_grad=True ) optimizer = torch.optim.SGD([zero_map], lr=1, momentum=0) optimizer.zero_grad() zero_tex = TexturesUV( [zero_map], self.mesh.textures.faces_uvs_padded(), self.mesh.textures.verts_uvs_padded(), sampling_mode=self.sampling_mode, ) tmp_mesh.textures = zero_tex images_predicted = self.renderer( tmp_mesh, cameras=self.cameras[i], lights=self.lights ) loss = torch.sum((cos_angles[i, :, :, 0:1] ** 1 - images_predicted) ** 2) loss.backward() optimizer.step() if fill: zero_map = zero_map.detach() / (self.gradient_maps[i] + 1e-8) zero_map = voronoi_solve( zero_map, self.gradient_maps[i][..., 0], self.device ) else: zero_map = zero_map.detach() / (self.gradient_maps[i] + 1e-8) cos_maps.append(zero_map) self.cos_maps = cos_maps # Get geometric info from fragment shader # Can be used for generating conditioning image and cosine weights # Returns some information you may not need, remember to release them for memory saving @torch.no_grad() def render_geometry(self, image_size=None): if image_size: size = self.renderer.rasterizer.raster_settings.image_size self.renderer.rasterizer.raster_settings.image_size = image_size shader = self.renderer.shader self.renderer.shader = HardGeometryShader( device=self.device, cameras=self.cameras[0], lights=self.lights ) tmp_mesh = self.mesh.clone() verts, normals, depths, cos_angles, texels, fragments = self.renderer( tmp_mesh.extend(len(self.cameras)), cameras=self.cameras, lights=self.lights ) self.renderer.shader = shader if image_size: self.renderer.rasterizer.raster_settings.image_size = size return verts, normals, depths, cos_angles, texels, fragments # Project world normal to view space and normalize @torch.no_grad() def decode_view_normal(self, normals): w2v_mat = self.cameras.get_full_projection_transform() normals_view = torch.clone(normals)[:, :, :, 0:3] normals_view = normals_view.reshape(normals_view.shape[0], -1, 3) normals_view = w2v_mat.transform_normals(normals_view) normals_view = normals_view.reshape(normals.shape[0:3] + (3,)) normals_view[:, :, :, 2] *= -1 normals = (normals_view[..., 0:3] + 1) * normals[ ..., 3: ] / 2 + torch.FloatTensor(((((0.5, 0.5, 1))))).to(self.device) * ( 1 - normals[..., 3:] ) # normals = torch.cat([normal for normal in normals], dim=1) normals = normals.clamp(0, 1) return normals # Normalize absolute depth to inverse depth @torch.no_grad() def decode_normalized_depth(self, depths, batched_norm=False): view_z, mask = depths.unbind(-1) view_z = view_z * mask + 100 * (1 - mask) inv_z = 1 / view_z inv_z_min = inv_z * mask + 100 * (1 - mask) if not batched_norm: max_ = torch.max(inv_z, 1, keepdim=True) max_ = torch.max(max_[0], 2, keepdim=True)[0] min_ = torch.min(inv_z_min, 1, keepdim=True) min_ = torch.min(min_[0], 2, keepdim=True)[0] else: max_ = torch.max(inv_z) min_ = torch.min(inv_z_min) inv_z = (inv_z - min_) / (max_ - min_) inv_z = inv_z.clamp(0, 1) inv_z = inv_z[..., None].repeat(1, 1, 1, 3) return inv_z # Multiple screen pixels could pass gradient to a same texel # We can precalculate this gradient strength and use it to normalize gradients when we bake textures @torch.enable_grad() def calculate_tex_gradient(self, channels=None): if not channels: channels = self.channels tmp_mesh = self.mesh.clone() gradient_maps = [] for i in range(len(self.cameras)): zero_map = torch.zeros( self.target_size + (channels,), device=self.device, requires_grad=True ) optimizer = torch.optim.SGD([zero_map], lr=1, momentum=0) optimizer.zero_grad() zero_tex = TexturesUV( [zero_map], self.mesh.textures.faces_uvs_padded(), self.mesh.textures.verts_uvs_padded(), sampling_mode=self.sampling_mode, ) tmp_mesh.textures = zero_tex images_predicted = self.renderer( tmp_mesh, cameras=self.cameras[i], lights=self.lights ) loss = torch.sum((1 - images_predicted) ** 2) loss.backward() optimizer.step() gradient_maps.append(zero_map.detach()) self.gradient_maps = gradient_maps # Get the UV space masks of triangles visible in each view # First get face ids from each view, then filter pixels on UV space to generate masks @torch.no_grad() def get_c2w( self, elevation_deg: LIST_TYPE, distance: LIST_TYPE, azimuth_deg: Optional[LIST_TYPE], num_views: Optional[int] = 1, device: Optional[str] = None, ) -> torch.FloatTensor: if azimuth_deg is None: assert ( num_views is not None ), "num_views must be provided if azimuth_deg is None." azimuth_deg = torch.linspace( 0, 360, num_views + 1, dtype=torch.float32, device=device )[:-1] else: num_views = len(azimuth_deg) def list_to_pt( x: LIST_TYPE, dtype: Optional[torch.dtype] = None, device: Optional[str] = None, ) -> torch.Tensor: if isinstance(x, list) or isinstance(x, np.ndarray): return torch.tensor(x, dtype=dtype, device=device) return x.to(dtype=dtype) azimuth_deg = list_to_pt(azimuth_deg, dtype=torch.float32, device=device) elevation_deg = list_to_pt(elevation_deg, dtype=torch.float32, device=device) camera_distances = list_to_pt(distance, dtype=torch.float32, device=device) elevation = elevation_deg * math.pi / 180 azimuth = azimuth_deg * math.pi / 180 camera_positions = torch.stack( [ camera_distances * torch.cos(elevation) * torch.cos(azimuth), camera_distances * torch.cos(elevation) * torch.sin(azimuth), camera_distances * torch.sin(elevation), ], dim=-1, ) center = torch.zeros_like(camera_positions) up = torch.tensor([0, 0, 1], dtype=torch.float32, device=device)[ None, : ].repeat(num_views, 1) lookat = F.normalize(center - camera_positions, dim=-1) right = F.normalize(torch.cross(lookat, up, dim=-1), dim=-1) up = F.normalize(torch.cross(right, lookat, dim=-1), dim=-1) c2w3x4 = torch.cat( [torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]], dim=-1, ) c2w = torch.cat([c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1) c2w[:, 3, 3] = 1.0 return c2w @torch.no_grad() def calculate_visible_triangle_mask(self, channels=None, image_size=(512, 512)): if not channels: channels = self.channels pix2face_list = [] for i in range(len(self.cameras)): self.renderer.rasterizer.raster_settings.image_size = image_size pix2face = self.renderer.rasterizer( self.mesh_d, cameras=self.cameras[i] ).pix_to_face self.renderer.rasterizer.raster_settings.image_size = self.render_size pix2face_list.append(pix2face) if not hasattr(self, "mesh_uv"): self.construct_uv_mesh() raster_settings = RasterizationSettings( image_size=self.target_size, blur_radius=0, faces_per_pixel=1, perspective_correct=False, cull_backfaces=False, max_faces_per_bin=30000, ) R, T = look_at_view_transform(dist=2, elev=0, azim=0) # flip_mat = torch.from_numpy(np.diag([-1.0, 1.0, -1.0]) ).type(torch.FloatTensor).to(R.device) # R = R@flip_mat # T = T*torch.tensor(np.array([-1.0, 1.0, -1.0])).type(torch.FloatTensor).to(R.device) # c2w = self.get_c2w([0], [1.8], [0]) # w2c = torch.linalg.inv(c2w)[:, :3,:] # R, T= w2c[:, :3,:3], w2c[:, :3, 3] # print("R size:{}, T size:{}".format(R.size(), T.size())) cameras = FoVOrthographicCameras(device=self.device, R=R, T=T) # cameras = CustomOrthographicCameras(device=self.device, R=R, T=T) # cameras = CustomOrthographicCameras(device=self.device, R=R, T=T, znear=0.1, min_x=-0.55, max_x=0.55, min_y=-0.55, max_y=0.55) rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings) uv_pix2face = rasterizer(self.mesh_uv).pix_to_face visible_triangles = [] for i in range(len(pix2face_list)): valid_faceid = torch.unique(pix2face_list[i]) valid_faceid = valid_faceid[1:] if valid_faceid[0] == -1 else valid_faceid mask = torch.isin(uv_pix2face[0], valid_faceid, assume_unique=False) # uv_pix2face[0][~mask] = -1 triangle_mask = torch.ones(self.target_size + (1,), device=self.device) triangle_mask[~mask] = 0 triangle_mask[:, 1:][triangle_mask[:, :-1] > 0] = 1 triangle_mask[:, :-1][triangle_mask[:, 1:] > 0] = 1 triangle_mask[1:, :][triangle_mask[:-1, :] > 0] = 1 triangle_mask[:-1, :][triangle_mask[1:, :] > 0] = 1 visible_triangles.append(triangle_mask) self.visible_triangles = visible_triangles # Render the current mesh and texture from current cameras def render_textured_views(self): meshes = self.mesh.extend(len(self.cameras)) images_predicted = self.renderer( meshes, cameras=self.cameras, lights=self.lights ) return [image.permute(2, 0, 1) for image in images_predicted] @torch.no_grad() def get_point_validation_by_o3d( self, points, eye_position, hidden_point_removal_radius=200 ): point_visibility = torch.zeros((points.shape[0]), device=points.device).bool() pcd = o3d.geometry.PointCloud( points=o3d.utility.Vector3dVector(points.cpu().numpy()) ) camera_pose = ( eye_position.get_camera_center().squeeze().cpu().numpy().astype(np.float64) ) # o3d_camera = [0, 0, diameter] diameter = np.linalg.norm( np.asarray(pcd.get_max_bound()) - np.asarray(pcd.get_min_bound()) ) radius = diameter * 200 # The radius of the sperical projection _, pt_map = pcd.hidden_point_removal(camera_pose, radius) visible_point_ids = np.array(pt_map) point_visibility[visible_point_ids] = True return point_visibility @torch.no_grad() def hidden_judge(self, camera, texture_dim): mesh = self.mesh verts = mesh.verts_packed() faces = mesh.faces_packed() verts_uv = mesh.textures.verts_uvs_padded()[0] # 获取打包后的 UV 坐标 (V, 2) faces_uv = mesh.textures.faces_uvs_padded()[0] uv_face_attr = torch.index_select( verts_uv, 0, faces_uv.view(-1) ) # 选择对应顶点的 UV 坐标 uv_face_attr = uv_face_attr.view( faces.shape[0], faces_uv.shape[1], 2 ).unsqueeze(0) x, y, z = verts[:, 0], verts[:, 1], verts[:, 2] mesh_out_of_range = False if ( x.min() < -1 or x.max() > 1 or y.min() < -1 or y.max() > 1 or z.min() < -1 or z.max() > 1 ): mesh_out_of_range = True face_vertices_world = kal.ops.mesh.index_vertices_by_faces( verts.unsqueeze(0), faces ) face_vertices_z = torch.zeros_like( face_vertices_world[:, :, :, -1], device=verts.device ) uv_position, face_idx = kal.render.mesh.rasterize( texture_dim, texture_dim, face_vertices_z, uv_face_attr * 2 - 1, face_features=face_vertices_world, ) uv_position = torch.clamp(uv_position, -1, 1) uv_position[face_idx == -1] = 0 points = uv_position.reshape(-1, 3) mask = points[:, 0] != 0 valid_points = points[mask] # np.save("tmp/pcd.npy", valid_points.cpu().numpy()) # print(camera.get_camera_center()) points_visibility = self.get_point_validation_by_o3d( valid_points, camera ).float() visibility_map = torch.zeros((texture_dim * texture_dim,)).to(self.device) visibility_map[mask] = points_visibility visibility_map = visibility_map.reshape((texture_dim, texture_dim)) return visibility_map @torch.enable_grad() def bake_texture( self, views=None, main_views=[], cos_weighted=True, channels=None, exp=None, noisy=False, generator=None, smooth_colorize=False, ): if not exp: exp = 1 if not channels: channels = self.channels views = [view.permute(1, 2, 0) for view in views] tmp_mesh = self.mesh bake_maps = [ torch.zeros( self.target_size + (views[0].shape[2],), device=self.device, requires_grad=True, ) for view in views ] optimizer = torch.optim.SGD(bake_maps, lr=1, momentum=0) optimizer.zero_grad() loss = 0 for i in range(len(self.cameras)): bake_tex = TexturesUV( [bake_maps[i]], tmp_mesh.textures.faces_uvs_padded(), tmp_mesh.textures.verts_uvs_padded(), sampling_mode=self.sampling_mode, ) tmp_mesh.textures = bake_tex images_predicted = self.renderer( tmp_mesh, cameras=self.cameras[i], lights=self.lights, device=self.device, ) predicted_rgb = images_predicted[..., :-1] loss += (((predicted_rgb[...] - views[i])) ** 2).sum() loss.backward(retain_graph=False) optimizer.step() total_weights = 0 baked = 0 for i in range(len(bake_maps)): normalized_baked_map = bake_maps[i].detach() / ( self.gradient_maps[i] + 1e-8 ) bake_map = voronoi_solve( normalized_baked_map, self.gradient_maps[i][..., 0], self.device ) # bake_map = voronoi_solve(normalized_baked_map, self.visible_triangles[i].squeeze()) weight = self.visible_triangles[i] * (self.cos_maps[i]) ** exp if smooth_colorize: visibility_map = self.hidden_judge( self.cameras[i], self.target_size[0] ).unsqueeze(-1) weight *= visibility_map if noisy: noise = ( torch.rand(weight.shape[:-1] + (1,), generator=generator) .type(weight.dtype) .to(weight.device) ) weight *= noise total_weights += weight baked += bake_map * weight baked /= total_weights + 1e-8 whole_visible_mask = None if not smooth_colorize: baked = voronoi_solve(baked, total_weights[..., 0], self.device) tmp_mesh.textures = TexturesUV( [baked], tmp_mesh.textures.faces_uvs_padded(), tmp_mesh.textures.verts_uvs_padded(), sampling_mode=self.sampling_mode, ) else: # smooth colorize baked = voronoi_solve(baked, total_weights[..., 0], self.device) whole_visible_mask = self.visible_triangles[0].to(torch.int32) for tensor in self.visible_triangles[1:]: whole_visible_mask = torch.bitwise_or( whole_visible_mask, tensor.to(torch.int32) ) baked *= whole_visible_mask tmp_mesh.textures = TexturesUV( [baked], tmp_mesh.textures.faces_uvs_padded(), tmp_mesh.textures.verts_uvs_padded(), sampling_mode=self.sampling_mode, ) extended_mesh = tmp_mesh.extend(len(self.cameras)) images_predicted = self.renderer( extended_mesh, cameras=self.cameras, lights=self.lights ) learned_views = [image.permute(2, 0, 1) for image in images_predicted] return learned_views, baked.permute(2, 0, 1), total_weights.permute(2, 0, 1) # Move the internel data to a specific device def to(self, device): for mesh_name in ["mesh", "mesh_d", "mesh_uv"]: if hasattr(self, mesh_name): mesh = getattr(self, mesh_name) setattr(self, mesh_name, mesh.to(device)) for list_name in ["visible_triangles", "visibility_maps", "cos_maps"]: if hasattr(self, list_name): map_list = getattr(self, list_name) for i in range(len(map_list)): map_list[i] = map_list[i].to(device)