File size: 8,158 Bytes
6a6db8a
d2001c1
 
5f3f107
d2001c1
 
 
5f3f107
96f986b
5f3f107
139c357
d2001c1
5f3f107
d2001c1
 
96f986b
 
d2001c1
96f986b
 
 
d2001c1
 
 
 
 
96f986b
d2001c1
96f986b
139c357
 
d2001c1
 
139c357
 
d2001c1
 
139c357
 
d2001c1
 
139c357
 
d2001c1
 
96f986b
d2001c1
 
139c357
 
d2001c1
139c357
 
d2001c1
 
 
 
96f986b
d2001c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139c357
 
d2001c1
 
 
 
96f986b
139c357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2001c1
139c357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2001c1
fe0c240
d2001c1
 
139c357
d2001c1
139c357
d2001c1
139c357
96f986b
 
139c357
d2001c1
139c357
d2001c1
 
 
 
 
 
 
 
 
 
 
 
 
139c357
d2001c1
139c357
d2001c1
96f986b
d2001c1
 
 
 
 
96f986b
 
d2001c1
 
 
 
 
139c357
96f986b
 
d2001c1
 
 
 
 
 
 
 
 
 
96f986b
d2001c1
139c357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2001c1
96f986b
139c357
d2001c1
139c357
d2001c1
 
 
 
 
139c357
d2001c1
139c357
d2001c1
 
 
 
139c357
d2001c1
139c357
d2001c1
96f986b
d2001c1
 
 
139c357
d2001c1
 
139c357
d2001c1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import gradio as gr
import time
import base64
from openai import OpenAI
import os
from io import BytesIO
from PIL import Image

# 配置
BASE_URL = "https://api.stepfun.com/v1"
# 从环境变量获取API密钥
STEP_API_KEY = os.environ.get("STEP_API_KEY", "")

# 可选模型
MODELS = ["step-3", "step-r1-v-mini"]

def image_to_base64(image):
    """将PIL图像转换为base64字符串"""
    if image is None:
        return None
    
    if isinstance(image, Image.Image):
        buffered = BytesIO()
        image.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue()).decode()
        return img_str
    
    return None

def call_step_api(image, prompt, model, temperature=0.7, max_tokens=2000):
    """调用Step API进行图像分析和文本生成,支持CoT推理展示"""
    
    if image is None:
        yield "❌ 请先上传一张图片", ""
        return
    
    if not prompt:
        yield "❌ 请输入提示词", ""
        return
    
    if not STEP_API_KEY:
        yield "❌ API密钥未配置。请在 Hugging Face Space 的 Settings 中添加 STEP_API_KEY 环境变量。", ""
        return
    
    # 转换图像为base64
    try:
        base64_image = image_to_base64(image)
        if base64_image is None:
            yield "❌ 图片处理失败", ""
            return
    except Exception as e:
        yield f"❌ 图片处理错误: {str(e)}", ""
        return
    
    # 构造消息
    messages = [
        {
            "role": "user",
            "content": [
                {
                    "type": "image_url",
                    "image_url": {
                        "url": f"data:image/png;base64,{base64_image}",
                        "detail": "high"
                    }
                },
                {
                    "type": "text",
                    "text": prompt
                }
            ]
        }
    ]
    
    # 创建OpenAI客户端
    try:
        client = OpenAI(api_key=STEP_API_KEY, base_url=BASE_URL)
    except Exception as e:
        yield f"❌ 客户端初始化失败: {str(e)}", ""
        return
    
    try:
        # 记录开始时间
        start_time = time.time()
        
        # 流式输出
        response = client.chat.completions.create(
            model=model,
            messages=messages,
            temperature=temperature,
            max_tokens=max_tokens,
            stream=True
        )
        
        full_response = ""
        reasoning_content = ""
        final_answer = ""
        is_reasoning = False
        reasoning_started = False
        
        for chunk in response:
            if chunk.choices and chunk.choices[0].delta:
                delta = chunk.choices[0].delta
                
                if hasattr(delta, 'content') and delta.content:
                    content = delta.content
                    full_response += content
                    
                    # 检测reasoning标记
                    if "<reasoning>" in content:
                        is_reasoning = True
                        reasoning_started = True
                        # 提取<reasoning>之前的内容添加到final_answer
                        before_reasoning = content.split("<reasoning>")[0]
                        if before_reasoning:
                            final_answer += before_reasoning
                        # 提取<reasoning>之后的内容开始reasoning
                        after_tag = content.split("<reasoning>")[1] if len(content.split("<reasoning>")) > 1 else ""
                        reasoning_content += after_tag
                    elif "</reasoning>" in content:
                        # 提取</reasoning>之前的内容添加到reasoning
                        before_tag = content.split("</reasoning>")[0]
                        reasoning_content += before_tag
                        is_reasoning = False
                        # 提取</reasoning>之后的内容添加到final_answer
                        after_reasoning = content.split("</reasoning>")[1] if len(content.split("</reasoning>")) > 1 else ""
                        final_answer += after_reasoning
                    elif is_reasoning:
                        reasoning_content += content
                    else:
                        final_answer += content
                    
                    # 实时输出
                    if reasoning_started:
                        yield reasoning_content, final_answer
                    else:
                        yield "", final_answer
        
        # 添加生成时间
        elapsed_time = time.time() - start_time
        time_info = f"\n\n⏱️ 生成用时: {elapsed_time:.2f}秒"
        final_answer += time_info
        
        yield reasoning_content, final_answer
                
    except Exception as e:
        error_msg = str(e)
        if "api_key" in error_msg.lower():
            yield "", "❌ API密钥错误:请检查密钥是否有效"
        elif "network" in error_msg.lower() or "connection" in error_msg.lower():
            yield "", "❌ 网络连接错误:请检查网络连接"
        else:
            yield "", f"❌ API调用错误: {error_msg[:200]}"

# 创建Gradio界面
with gr.Blocks(title="Step-3", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🤖 Step-3
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            # 输入区域
            image_input = gr.Image(
                label="上传图片",
                type="pil",
                height=300
            )
            
            prompt_input = gr.Textbox(
                label="提示词",
                placeholder="例如:这是什么?请详细描述",
                lines=3,
                value="请详细描述这张图片的内容。"
            )
            
            with gr.Accordion("高级设置", open=False):
                model_select = gr.Dropdown(
                    choices=MODELS,
                    value=MODELS[0],
                    label="选择模型"
                )
                
                temperature_slider = gr.Slider(
                    minimum=0,
                    maximum=1,
                    value=0.7,
                    step=0.1,
                    label="Temperature"
                )
                
                max_tokens_slider = gr.Slider(
                    minimum=100,
                    maximum=4000,
                    value=2000,
                    step=100,
                    label="最大输出长度"
                )
            
            submit_btn = gr.Button("🚀 开始分析", variant="primary")
            clear_btn = gr.Button("🗑️ 清空", variant="secondary")
        
        with gr.Column(scale=1):
            # 推理过程展示
            with gr.Accordion("💭 推理过程 (CoT)", open=True):
                reasoning_output = gr.Textbox(
                    label="思考过程",
                    lines=10,
                    max_lines=15,
                    show_copy_button=True,
                    interactive=False
                )
            
            # 最终答案展示
            answer_output = gr.Textbox(
                label="📝 分析结果",
                lines=15,
                max_lines=25,
                show_copy_button=True,
                interactive=False
            )
    
    # 事件处理 - 流式输出到两个文本框
    submit_btn.click(
        fn=call_step_api,
        inputs=[
            image_input,
            prompt_input,
            model_select,
            temperature_slider,
            max_tokens_slider
        ],
        outputs=[reasoning_output, answer_output],
        show_progress=True
    )
    
    clear_btn.click(
        fn=lambda: (None, "", "", ""),
        inputs=[],
        outputs=[image_input, prompt_input, reasoning_output, answer_output]
    )
    
    # 页脚
    gr.Markdown("""
    ---
    Powered by [Step-3](https://www.stepfun.com/)
    """)

# 启动应用
if __name__ == "__main__":
    demo.launch()