File size: 7,410 Bytes
6a6db8a
d2001c1
 
b34c488
d2001c1
 
 
5f3f107
96f986b
5f3f107
139c357
d2001c1
5f3f107
d2001c1
 
96f986b
 
d2001c1
96f986b
 
 
d2001c1
 
 
b34c488
d2001c1
96f986b
d2001c1
96f986b
139c357
bfe7b82
d2001c1
 
bfe7b82
139c357
d2001c1
 
bfe7b82
139c357
d2001c1
b34c488
bfe7b82
 
 
 
 
 
 
b34c488
 
 
 
 
 
 
d2001c1
bfe7b82
 
 
 
 
b34c488
 
 
bfe7b82
b34c488
 
 
 
 
578098f
d2001c1
b34c488
 
 
d2001c1
b34c488
139c357
 
 
 
 
b34c488
 
 
 
 
 
 
 
 
 
 
 
139c357
b34c488
 
139c357
 
 
 
 
d2001c1
139c357
 
 
 
b34c488
 
 
 
 
 
139c357
b34c488
 
 
 
139c357
b34c488
 
139c357
 
 
 
 
 
b34c488
 
fe0c240
b34c488
 
 
 
 
 
 
 
 
96f986b
 
139c357
d2001c1
139c357
d2001c1
 
 
 
 
 
bfe7b82
d2001c1
 
 
 
 
 
bfe7b82
d2001c1
bfe7b82
d2001c1
96f986b
d2001c1
 
 
 
 
96f986b
 
d2001c1
 
 
 
 
139c357
96f986b
 
d2001c1
 
 
 
 
 
 
 
 
 
96f986b
d2001c1
139c357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2001c1
96f986b
139c357
d2001c1
139c357
d2001c1
 
 
 
 
139c357
d2001c1
139c357
d2001c1
 
 
 
139c357
d2001c1
139c357
d2001c1
96f986b
d2001c1
 
 
139c357
d2001c1
 
139c357
d2001c1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import gradio as gr
import time
import base64
from openai import OpenAI
import os
from io import BytesIO
from PIL import Image

# 配置
BASE_URL = "https://api.stepfun.com/v1"
# 从环境变量获取API密钥
STEP_API_KEY = os.environ.get("STEP_API_KEY", "")

# 可选模型
MODELS = ["step-3", "step-r1-v-mini"]

def image_to_base64(image):
    """将PIL图像转换为base64字符串"""
    if image is None:
        return None
    
    if isinstance(image, Image.Image):
        buffered = BytesIO()
        image.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
        return img_str
    
    return None

def call_step_api(image, prompt, model, temperature=0.7, max_tokens=2000):
    """调用Step API进行分析,支持纯文本和图像+文本"""
    
    if not prompt:
        yield "", "❌ 请输入提示词"
        return
    
    if not STEP_API_KEY:
        yield "", "❌ API密钥未配置。请在 Hugging Face Space 的 Settings 中添加 STEP_API_KEY 环境变量。"
        return
    
    # 构造消息内容 - 参考官方示例
    if image is not None:
        # 有图片的情况
        try:
            base64_image = image_to_base64(image)
            if base64_image is None:
                yield "", "❌ 图片处理失败"
                return
            
            # 按照官方示例的格式构造消息
            messages = [
                {"role": "user", "content": [
                    {"type": "image_url", "image_url": {"url": f"data:image/jpg;base64,{base64_image}", "detail": "high"}},
                    {"type": "text", "text": prompt}
                ]}
            ]
        except Exception as e:
            yield "", f"❌ 图片处理错误: {str(e)}"
            return
    else:
        # 纯文本的情况
        messages = [
            {"role": "user", "content": prompt}
        ]
    
    # 创建OpenAI客户端 - 完全按照官方示例
    try:
        client = OpenAI(api_key=STEP_API_KEY, base_url=BASE_URL)
    except Exception as e:
        yield "", f"❌ 客户端初始化失败: {str(e)}"
        return
    
    # 记录开始时间
    start_time = time.time()
    
    try:
        # 调用API - 按照官方示例
        response = client.chat.completions.create(
            model=model,
            messages=messages,
            stream=True
        )
    except Exception as e:
        yield "", f"❌ API请求失败: {str(e)}"
        return
    
    # 处理流式响应
    full_response = ""
    reasoning_content = ""
    final_answer = ""
    is_reasoning = False
    reasoning_started = False
    
    try:
        for chunk in response:
            # 按照官方示例处理chunk
            if chunk.choices and len(chunk.choices) > 0:
                delta = chunk.choices[0].delta
                
                if hasattr(delta, 'content') and delta.content:
                    content = delta.content
                    full_response += content
                    
                    # 检测reasoning标记
                    if "<reasoning>" in content:
                        is_reasoning = True
                        reasoning_started = True
                        # 处理标记前后的内容
                        parts = content.split("<reasoning>")
                        if parts[0]:
                            final_answer += parts[0]
                        if len(parts) > 1:
                            reasoning_content += parts[1]
                    elif "</reasoning>" in content:
                        # 处理结束标记
                        parts = content.split("</reasoning>")
                        if parts[0]:
                            reasoning_content += parts[0]
                        is_reasoning = False
                        if len(parts) > 1:
                            final_answer += parts[1]
                    elif is_reasoning:
                        reasoning_content += content
                    else:
                        final_answer += content
                    
                    # 实时输出
                    yield reasoning_content, final_answer
    
    except Exception as e:
        yield reasoning_content, final_answer + f"\n\n❌ 流处理错误: {str(e)}"
        return
    
    # 添加生成时间
    elapsed_time = time.time() - start_time
    time_info = f"\n\n⏱️ 生成用时: {elapsed_time:.2f}秒"
    final_answer += time_info
    
    yield reasoning_content, final_answer

# 创建Gradio界面
with gr.Blocks(title="Step-3", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🤖 Step-3
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            # 输入区域
            image_input = gr.Image(
                label="上传图片(可选)",
                type="pil",
                height=300
            )
            
            prompt_input = gr.Textbox(
                label="提示词",
                placeholder="输入你的问题或描述...",
                lines=3,
                value=""
            )
            
            with gr.Accordion("高级设置", open=False):
                model_select = gr.Dropdown(
                    choices=MODELS,
                    value=MODELS[0],
                    label="选择模型"
                )
                
                temperature_slider = gr.Slider(
                    minimum=0,
                    maximum=1,
                    value=0.7,
                    step=0.1,
                    label="Temperature"
                )
                
                max_tokens_slider = gr.Slider(
                    minimum=100,
                    maximum=4000,
                    value=2000,
                    step=100,
                    label="最大输出长度"
                )
            
            submit_btn = gr.Button("🚀 开始分析", variant="primary")
            clear_btn = gr.Button("🗑️ 清空", variant="secondary")
        
        with gr.Column(scale=1):
            # 推理过程展示
            with gr.Accordion("💭 推理过程 (CoT)", open=True):
                reasoning_output = gr.Textbox(
                    label="思考过程",
                    lines=10,
                    max_lines=15,
                    show_copy_button=True,
                    interactive=False
                )
            
            # 最终答案展示
            answer_output = gr.Textbox(
                label="📝 分析结果",
                lines=15,
                max_lines=25,
                show_copy_button=True,
                interactive=False
            )
    
    # 事件处理 - 流式输出到两个文本框
    submit_btn.click(
        fn=call_step_api,
        inputs=[
            image_input,
            prompt_input,
            model_select,
            temperature_slider,
            max_tokens_slider
        ],
        outputs=[reasoning_output, answer_output],
        show_progress=True
    )
    
    clear_btn.click(
        fn=lambda: (None, "", "", ""),
        inputs=[],
        outputs=[image_input, prompt_input, reasoning_output, answer_output]
    )
    
    # 页脚
    gr.Markdown("""
    ---
    Powered by [Step-3](https://www.stepfun.com/)
    """)

# 启动应用
if __name__ == "__main__":
    demo.launch()