Spaces:
Build error
Build error
File size: 7,410 Bytes
6a6db8a d2001c1 b34c488 d2001c1 5f3f107 96f986b 5f3f107 139c357 d2001c1 5f3f107 d2001c1 96f986b d2001c1 96f986b d2001c1 b34c488 d2001c1 96f986b d2001c1 96f986b 139c357 bfe7b82 d2001c1 bfe7b82 139c357 d2001c1 bfe7b82 139c357 d2001c1 b34c488 bfe7b82 b34c488 d2001c1 bfe7b82 b34c488 bfe7b82 b34c488 578098f d2001c1 b34c488 d2001c1 b34c488 139c357 b34c488 139c357 b34c488 139c357 d2001c1 139c357 b34c488 139c357 b34c488 139c357 b34c488 139c357 b34c488 fe0c240 b34c488 96f986b 139c357 d2001c1 139c357 d2001c1 bfe7b82 d2001c1 bfe7b82 d2001c1 bfe7b82 d2001c1 96f986b d2001c1 96f986b d2001c1 139c357 96f986b d2001c1 96f986b d2001c1 139c357 d2001c1 96f986b 139c357 d2001c1 139c357 d2001c1 139c357 d2001c1 139c357 d2001c1 139c357 d2001c1 139c357 d2001c1 96f986b d2001c1 139c357 d2001c1 139c357 d2001c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import gradio as gr
import time
import base64
from openai import OpenAI
import os
from io import BytesIO
from PIL import Image
# 配置
BASE_URL = "https://api.stepfun.com/v1"
# 从环境变量获取API密钥
STEP_API_KEY = os.environ.get("STEP_API_KEY", "")
# 可选模型
MODELS = ["step-3", "step-r1-v-mini"]
def image_to_base64(image):
"""将PIL图像转换为base64字符串"""
if image is None:
return None
if isinstance(image, Image.Image):
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
return img_str
return None
def call_step_api(image, prompt, model, temperature=0.7, max_tokens=2000):
"""调用Step API进行分析,支持纯文本和图像+文本"""
if not prompt:
yield "", "❌ 请输入提示词"
return
if not STEP_API_KEY:
yield "", "❌ API密钥未配置。请在 Hugging Face Space 的 Settings 中添加 STEP_API_KEY 环境变量。"
return
# 构造消息内容 - 参考官方示例
if image is not None:
# 有图片的情况
try:
base64_image = image_to_base64(image)
if base64_image is None:
yield "", "❌ 图片处理失败"
return
# 按照官方示例的格式构造消息
messages = [
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": f"data:image/jpg;base64,{base64_image}", "detail": "high"}},
{"type": "text", "text": prompt}
]}
]
except Exception as e:
yield "", f"❌ 图片处理错误: {str(e)}"
return
else:
# 纯文本的情况
messages = [
{"role": "user", "content": prompt}
]
# 创建OpenAI客户端 - 完全按照官方示例
try:
client = OpenAI(api_key=STEP_API_KEY, base_url=BASE_URL)
except Exception as e:
yield "", f"❌ 客户端初始化失败: {str(e)}"
return
# 记录开始时间
start_time = time.time()
try:
# 调用API - 按照官方示例
response = client.chat.completions.create(
model=model,
messages=messages,
stream=True
)
except Exception as e:
yield "", f"❌ API请求失败: {str(e)}"
return
# 处理流式响应
full_response = ""
reasoning_content = ""
final_answer = ""
is_reasoning = False
reasoning_started = False
try:
for chunk in response:
# 按照官方示例处理chunk
if chunk.choices and len(chunk.choices) > 0:
delta = chunk.choices[0].delta
if hasattr(delta, 'content') and delta.content:
content = delta.content
full_response += content
# 检测reasoning标记
if "<reasoning>" in content:
is_reasoning = True
reasoning_started = True
# 处理标记前后的内容
parts = content.split("<reasoning>")
if parts[0]:
final_answer += parts[0]
if len(parts) > 1:
reasoning_content += parts[1]
elif "</reasoning>" in content:
# 处理结束标记
parts = content.split("</reasoning>")
if parts[0]:
reasoning_content += parts[0]
is_reasoning = False
if len(parts) > 1:
final_answer += parts[1]
elif is_reasoning:
reasoning_content += content
else:
final_answer += content
# 实时输出
yield reasoning_content, final_answer
except Exception as e:
yield reasoning_content, final_answer + f"\n\n❌ 流处理错误: {str(e)}"
return
# 添加生成时间
elapsed_time = time.time() - start_time
time_info = f"\n\n⏱️ 生成用时: {elapsed_time:.2f}秒"
final_answer += time_info
yield reasoning_content, final_answer
# 创建Gradio界面
with gr.Blocks(title="Step-3", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🤖 Step-3
""")
with gr.Row():
with gr.Column(scale=1):
# 输入区域
image_input = gr.Image(
label="上传图片(可选)",
type="pil",
height=300
)
prompt_input = gr.Textbox(
label="提示词",
placeholder="输入你的问题或描述...",
lines=3,
value=""
)
with gr.Accordion("高级设置", open=False):
model_select = gr.Dropdown(
choices=MODELS,
value=MODELS[0],
label="选择模型"
)
temperature_slider = gr.Slider(
minimum=0,
maximum=1,
value=0.7,
step=0.1,
label="Temperature"
)
max_tokens_slider = gr.Slider(
minimum=100,
maximum=4000,
value=2000,
step=100,
label="最大输出长度"
)
submit_btn = gr.Button("🚀 开始分析", variant="primary")
clear_btn = gr.Button("🗑️ 清空", variant="secondary")
with gr.Column(scale=1):
# 推理过程展示
with gr.Accordion("💭 推理过程 (CoT)", open=True):
reasoning_output = gr.Textbox(
label="思考过程",
lines=10,
max_lines=15,
show_copy_button=True,
interactive=False
)
# 最终答案展示
answer_output = gr.Textbox(
label="📝 分析结果",
lines=15,
max_lines=25,
show_copy_button=True,
interactive=False
)
# 事件处理 - 流式输出到两个文本框
submit_btn.click(
fn=call_step_api,
inputs=[
image_input,
prompt_input,
model_select,
temperature_slider,
max_tokens_slider
],
outputs=[reasoning_output, answer_output],
show_progress=True
)
clear_btn.click(
fn=lambda: (None, "", "", ""),
inputs=[],
outputs=[image_input, prompt_input, reasoning_output, answer_output]
)
# 页脚
gr.Markdown("""
---
Powered by [Step-3](https://www.stepfun.com/)
""")
# 启动应用
if __name__ == "__main__":
demo.launch() |