File size: 9,617 Bytes
6a6db8a
d2001c1
 
b34c488
d2001c1
 
 
5f37fb9
5f3f107
96f986b
5f3f107
139c357
d2001c1
5f3f107
96f986b
d2001c1
96f986b
 
 
d2001c1
 
 
b34c488
d2001c1
96f986b
d2001c1
96f986b
5f37fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2001c1
5f37fb9
 
 
139c357
d2001c1
 
560ce7e
5f37fb9
 
 
139c357
d2001c1
560ce7e
 
5f37fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16c954d
 
5f37fb9
 
16c954d
5f37fb9
 
 
16c954d
 
 
 
5f37fb9
bfe7b82
5f37fb9
 
 
 
 
 
bfe7b82
16c954d
5f37fb9
560ce7e
5f37fb9
bfe7b82
16c954d
b34c488
 
560ce7e
b34c488
560ce7e
1cad6a0
5f37fb9
578098f
d2001c1
16c954d
d2001c1
560ce7e
139c357
1cad6a0
139c357
5f37fb9
 
139c357
 
560ce7e
16c954d
 
 
5f37fb9
 
560ce7e
5f37fb9
139c357
560ce7e
b34c488
139c357
 
16c954d
5f37fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
560ce7e
 
 
 
5f37fb9
560ce7e
 
139c357
fe0c240
560ce7e
 
 
1cad6a0
5f37fb9
16c954d
 
1cad6a0
5f37fb9
96f986b
 
139c357
d2001c1
139c357
16c954d
d2001c1
 
 
5f37fb9
16c954d
 
5f37fb9
16c954d
 
5f37fb9
 
d2001c1
 
16c954d
5f37fb9
 
 
 
 
 
 
96f986b
5f37fb9
96f986b
d2001c1
5f37fb9
 
 
 
 
 
 
 
 
d2001c1
16c954d
5f37fb9
 
 
 
 
 
 
 
16c954d
 
 
 
 
5f37fb9
 
d2001c1
 
 
16c954d
 
5f37fb9
d2001c1
96f986b
d2001c1
 
 
16c954d
 
 
 
 
d2001c1
 
139c357
d2001c1
560ce7e
 
1cad6a0
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import gradio as gr
import time
import base64
from openai import OpenAI
import os
from io import BytesIO
from PIL import Image
import re

# 配置
BASE_URL = "https://api.stepfun.com/v1"
# 从环境变量获取API密钥
STEP_API_KEY = os.environ.get("STEP_API_KEY", "")

def image_to_base64(image):
    """将PIL图像转换为base64字符串"""
    if image is None:
        return None
    
    if isinstance(image, Image.Image):
        buffered = BytesIO()
        image.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
        return img_str
    
    return None

def extract_cot_and_answer(text):
    """从响应中提取CoT推理过程和最终答案"""
    # 匹配<reasoning>标签内的内容
    reasoning_pattern = re.compile(r'<reasoning>(.*?)</reasoning>', re.DOTALL)
    
    match = reasoning_pattern.search(text)
    if match:
        cot = match.group(1).strip()
        # 移除reasoning标签及其内容,得到最终答案
        answer = reasoning_pattern.sub('', text).strip()
        return cot, answer
    else:
        # 如果没有reasoning标签,整个响应就是答案
        return "", text

def format_message_with_image(message_text, image_path=None):
    """格式化包含图片的消息"""
    if image_path:
        # 创建包含图片和文本的消息
        return f'<img src="{image_path}" style="max-width: 200px; max-height: 200px; border-radius: 8px; margin-bottom: 10px;"><br>{message_text}'
    return message_text

def call_step_api_stream(message, history):
    """调用Step API进行流式对话,支持多模态输入"""
    print(f"[DEBUG] Starting API call - Message type: {type(message)}")
    
    if not message:
        print("[DEBUG] No message provided")
        yield history, "", ""
        return
    
    if not STEP_API_KEY:
        print("[DEBUG] API key not configured")
        error_msg = "❌ API key not configured. Please add STEP_API_KEY in Settings."
        history.append([message if isinstance(message, str) else "Message", error_msg])
        yield history, "", ""
        return
    
    print(f"[DEBUG] API Key exists: {bool(STEP_API_KEY)}")
    
    # 处理多模态输入
    text_content = ""
    image_content = None
    display_message = ""
    
    # Gradio MultimodalTextbox 返回一个字典
    if isinstance(message, dict):
        text_content = message.get("text", "")
        files = message.get("files", [])
        
        # 处理图片文件
        if files and len(files) > 0:
            image_path = files[0]  # 取第一张图片
            try:
                img = Image.open(image_path)
                image_content = image_to_base64(img)
                # 创建显示消息,包含图片缩略图
                display_message = format_message_with_image(text_content, image_path)
                print(f"[DEBUG] Image processed successfully")
            except Exception as e:
                print(f"[DEBUG] Failed to process image: {e}")
                display_message = text_content
        else:
            display_message = text_content
    else:
        # 纯文本消息
        text_content = str(message)
        display_message = text_content
    
    # 添加用户消息到历史
    history.append([display_message, ""])
    yield history, "", ""
    
    # 构造API消息
    messages = []
    
    # 添加历史对话(只提取文本部分,不包含HTML)
    for h in history[:-1]:  # 不包含当前消息
        if h[0]:  # 用户消息
            # 从HTML中提取纯文本
            user_text = re.sub(r'<[^>]+>', '', h[0]) if '<' in h[0] else h[0]
            messages.append({"role": "user", "content": user_text})
        if h[1]:  # 助手回复
            messages.append({"role": "assistant", "content": h[1]})
    
    # 构造当前消息
    if image_content:
        # 有图片的情况
        current_content = [
            {"type": "image_url", "image_url": {"url": f"data:image/jpg;base64,{image_content}", "detail": "high"}}
        ]
        if text_content:
            current_content.append({"type": "text", "text": text_content})
        messages.append({"role": "user", "content": current_content})
    else:
        # 纯文本
        messages.append({"role": "user", "content": text_content})
    
    print(f"[DEBUG] Messages count: {len(messages)}")
    
    # 创建客户端
    try:
        client = OpenAI(api_key=STEP_API_KEY, base_url=BASE_URL)
        print("[DEBUG] Client created successfully")
    except Exception as e:
        print(f"[DEBUG] Client initialization failed: {e}")
        history[-1][1] = f"❌ Client initialization failed: {str(e)}"
        yield history, "", ""
        return
    
    # 调用API
    try:
        print("[DEBUG] Calling API...")
        response = client.chat.completions.create(
            model="step-3",
            messages=messages,
            temperature=0.7,
            max_tokens=2000,
            stream=True
        )
        print("[DEBUG] API call successful, processing stream...")
        
        # 处理流式响应
        full_response = ""
        current_cot = ""
        current_answer = ""
        chunk_count = 0
        
        for chunk in response:
            chunk_count += 1
            if chunk.choices and len(chunk.choices) > 0:
                delta = chunk.choices[0].delta
                if hasattr(delta, 'content') and delta.content:
                    full_response += delta.content
                    
                    # 实时提取CoT和答案
                    current_cot, current_answer = extract_cot_and_answer(full_response)
                    
                    # 更新历史中的回复
                    if current_cot and current_answer:
                        # 如果有CoT,显示完整格式
                        history[-1][1] = f"💭 **Reasoning Process:**\n\n{current_cot}\n\n---\n\n📝 **Answer:**\n\n{current_answer}"
                    elif current_cot:
                        # 只有CoT,还没有答案
                        history[-1][1] = f"💭 **Reasoning Process:**\n\n{current_cot}\n\n---\n\n📝 **Answer:**\n\n*Generating...*"
                    else:
                        # 没有CoT,直接显示答案
                        history[-1][1] = current_answer
                    
                    print(f"[DEBUG] Chunk {chunk_count}: processed")
                    yield history, current_cot, current_answer
        
        if not full_response:
            print("[DEBUG] No response content received")
            history[-1][1] = "⚠️ No response received from API"
            yield history, "", ""
        else:
            print(f"[DEBUG] Final response length: {len(full_response)} chars")
                    
    except Exception as e:
        print(f"[DEBUG] API request failed: {e}")
        import traceback
        traceback.print_exc()
        history[-1][1] = f"❌ API request failed: {str(e)}"
        yield history, "", ""

def clear_history():
    """Clear conversation history"""
    return [], None

# 创建Gradio界面
with gr.Blocks(title="Step-3", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🤖 Step-3
    Hello, I am Step-3! 
    """)
    
    with gr.Row():
        with gr.Column(scale=2):
            # 对话界面
            chatbot = gr.Chatbot(
                height=600,
                show_label=False,
                elem_id="chatbot",
                bubble_full_width=False,
                render_markdown=True
            )
            
            with gr.Row():
                # 多模态输入框 - 支持文本和图片
                msg = gr.MultimodalTextbox(
                    placeholder="Type your message here... (You can paste images directly)",
                    show_label=False,
                    file_types=["image"],
                    container=False,
                    submit_btn="Send"
                )
                clear_btn = gr.Button("Clear", scale=0)
        
        with gr.Column(scale=1):
            # CoT推理过程展示
            gr.Markdown("### 💭 Chain of Thought")
            cot_display = gr.Textbox(
                label="Reasoning Process",
                lines=10,
                max_lines=15,
                show_label=False,
                interactive=False,
                show_copy_button=True
            )
            
            gr.Markdown("### 📝 Final Answer")
            answer_display = gr.Textbox(
                label="Answer",
                lines=10,
                max_lines=15,
                show_label=False,
                interactive=False,
                show_copy_button=True
            )
    
    # 事件处理
    msg.submit(
        call_step_api_stream,
        [msg, chatbot],
        [chatbot, cot_display, answer_display]
    )
    
    clear_btn.click(
        clear_history,
        None,
        [chatbot, msg]
    )
    
    # 页脚
    gr.Markdown("""
    ---
    <div style="text-align: center;">
        <img src="https://huggingface.co/stepfun-ai/step3/resolve/main/figures/stepfun-logo.png" alt="StepFun Logo" style="height: 40px; margin: 10px;">
        <br>
        Powered by <a href="https://www.stepfun.com/" target="_blank">StepFun</a>
    </div>
    """)

# 启动应用
if __name__ == "__main__":
    print(f"[DEBUG] Starting app with API key: {'Set' if STEP_API_KEY else 'Not set'}")
    print(f"[DEBUG] Base URL: {BASE_URL}")
    demo.queue(max_size=10)
    demo.launch(
        share=False,
        debug=True
    )