Step3 / app.py
Zenith Wang
改造为多轮对话聊天机器人界面,添加StepFun logo
16c954d
raw
history blame
7.37 kB
import gradio as gr
import time
import base64
from openai import OpenAI
import os
from io import BytesIO
from PIL import Image
# 配置
BASE_URL = "https://api.stepfun.com/v1"
# 从环境变量获取API密钥
STEP_API_KEY = os.environ.get("STEP_API_KEY", "")
# 可选模型
MODELS = ["step-3", "step-r1-v-mini"]
def image_to_base64(image):
"""将PIL图像转换为base64字符串"""
if image is None:
return None
if isinstance(image, Image.Image):
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
return img_str
return None
def call_step_api_stream(message, history, model, temperature, max_tokens, image=None):
"""调用Step API进行流式对话"""
if not message and not image:
yield history
return
if not STEP_API_KEY:
history.append([message or "图片", "❌ API密钥未配置。请在 Settings 中添加 STEP_API_KEY。"])
yield history
return
# 构造消息历史
messages = []
# 添加历史对话
for h in history:
if h[0]: # 用户消息
messages.append({"role": "user", "content": h[0]})
if h[1]: # 助手回复
messages.append({"role": "assistant", "content": h[1]})
# 构造当前消息
if image is not None:
# 有图片的情况
try:
base64_image = image_to_base64(image)
if base64_image is None:
history.append([message or "图片", "❌ 图片处理失败"])
yield history
return
current_content = [
{"type": "image_url", "image_url": {"url": f"data:image/jpg;base64,{base64_image}", "detail": "high"}}
]
if message:
current_content.append({"type": "text", "text": message})
messages.append({"role": "user", "content": current_content})
display_message = f"[图片] {message}" if message else "[图片]"
except Exception as e:
history.append([message or "图片", f"❌ 图片处理错误: {str(e)}"])
yield history
return
else:
# 纯文本
messages.append({"role": "user", "content": message})
display_message = message
# 添加到历史记录
history.append([display_message, ""])
# 创建客户端
try:
client = OpenAI(api_key=STEP_API_KEY, base_url=BASE_URL)
except Exception as e:
history[-1][1] = f"❌ 客户端初始化失败: {str(e)}"
yield history
return
# 调用API
try:
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stream=True
)
# 处理流式响应
full_response = ""
for chunk in response:
if chunk.choices and len(chunk.choices) > 0:
delta = chunk.choices[0].delta
if hasattr(delta, 'content') and delta.content:
full_response += delta.content
history[-1][1] = full_response
yield history
except Exception as e:
history[-1][1] = f"❌ API请求失败: {str(e)}"
yield history
def user_input(message, history, image):
"""处理用户输入"""
if message or image:
return "", history, None
return message, history, image
def clear_history():
"""清空对话历史"""
return [], None, ""
# 创建Gradio界面
with gr.Blocks(title="Step-3", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🤖 Step-3
Hello, I am Step-3!
""")
with gr.Row():
with gr.Column(scale=3):
# 对话界面
chatbot = gr.Chatbot(
height=500,
show_label=False,
elem_id="chatbot",
bubble_full_width=False,
avatar_images=(None, "🤖")
)
with gr.Row():
with gr.Column(scale=8):
msg = gr.Textbox(
label="输入消息",
placeholder="输入你的问题...",
lines=1,
max_lines=5,
show_label=False,
elem_id="msg",
container=False
)
with gr.Column(scale=1, min_width=100):
submit_btn = gr.Button("发送", variant="primary")
with gr.Column(scale=1, min_width=100):
clear_btn = gr.Button("清空对话")
# 图片上传
with gr.Row():
image_input = gr.Image(
label="上传图片(可选)",
type="pil",
height=150,
scale=1
)
with gr.Column(scale=1):
# 设置面板
gr.Markdown("### ⚙️ 设置")
model_select = gr.Dropdown(
choices=MODELS,
value=MODELS[0],
label="模型选择",
interactive=True
)
temperature_slider = gr.Slider(
minimum=0,
maximum=1,
value=0.7,
step=0.1,
label="Temperature",
interactive=True
)
max_tokens_slider = gr.Slider(
minimum=100,
maximum=4000,
value=2000,
step=100,
label="最大输出长度",
interactive=True
)
gr.Markdown("""
### 📝 使用说明
- 支持多轮对话
- 可上传图片进行分析
- 支持纯文本对话
- 历史记录会保留上下文
""")
# 事件处理
msg.submit(
user_input,
[msg, chatbot, image_input],
[msg, chatbot, image_input],
queue=False
).then(
call_step_api_stream,
[msg, chatbot, model_select, temperature_slider, max_tokens_slider, image_input],
chatbot
)
submit_btn.click(
user_input,
[msg, chatbot, image_input],
[msg, chatbot, image_input],
queue=False
).then(
call_step_api_stream,
[msg, chatbot, model_select, temperature_slider, max_tokens_slider, image_input],
chatbot
)
clear_btn.click(
clear_history,
None,
[chatbot, image_input, msg],
queue=False
)
# 页脚
gr.Markdown("""
---
<div style="text-align: center;">
<img src="https://huggingface.co/stepfun-ai/step3/resolve/main/figures/stepfun-logo.png" alt="StepFun Logo" style="height: 40px; margin: 10px;">
<br>
Powered by <a href="https://www.stepfun.com/" target="_blank">StepFun</a>
</div>
""")
# 启动应用
if __name__ == "__main__":
demo.queue()
demo.launch()