Step3 / app.py
Zenith Wang
修复OpenAI客户端proxies参数错误,优化依赖版本
5637d75
raw
history blame
8.87 kB
import gradio as gr
import time
import base64
from openai import OpenAI
import os
from io import BytesIO
from PIL import Image
# 配置
BASE_URL = "https://api.stepfun.com/v1"
# 从环境变量获取API密钥
STEP_API_KEY = os.environ.get("STEP_API_KEY", "")
# 可选模型
MODELS = ["step-3", "step-r1-v-mini"]
def image_to_base64(image):
"""将PIL图像转换为base64字符串"""
if image is None:
return None
if isinstance(image, Image.Image):
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str
return None
def call_step_api(image, prompt, model, temperature=0.7, max_tokens=2000):
"""调用Step API进行分析,支持纯文本和图像+文本"""
if not prompt:
yield "", "❌ 请输入提示词"
return
if not STEP_API_KEY:
yield "", "❌ API密钥未配置。请在 Hugging Face Space 的 Settings 中添加 STEP_API_KEY 环境变量。"
return
# 构造消息内容
if image is not None:
# 有图片的情况
try:
base64_image = image_to_base64(image)
if base64_image is None:
yield "", "❌ 图片处理失败"
return
message_content = [
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{base64_image}",
"detail": "high"
}
},
{
"type": "text",
"text": prompt
}
]
except Exception as e:
yield "", f"❌ 图片处理错误: {str(e)}"
return
else:
# 纯文本的情况
message_content = prompt
# 构造消息
messages = [
{
"role": "user",
"content": message_content
}
]
# 创建OpenAI客户端 - 简化初始化
try:
# 直接使用最基本的参数初始化
client = OpenAI(
api_key=STEP_API_KEY,
base_url=BASE_URL,
# 不传递任何其他参数,避免版本兼容问题
)
except Exception as e:
# 如果失败,尝试通过环境变量
try:
os.environ['OPENAI_API_KEY'] = STEP_API_KEY
os.environ['OPENAI_BASE_URL'] = BASE_URL
# 清理可能导致问题的环境变量
for key in ['HTTP_PROXY', 'HTTPS_PROXY', 'http_proxy', 'https_proxy']:
if key in os.environ:
del os.environ[key]
client = OpenAI()
except Exception as e2:
yield "", f"❌ 客户端初始化失败: {str(e)}"
return
try:
# 记录开始时间
start_time = time.time()
# 流式输出
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stream=True
)
full_response = ""
reasoning_content = ""
final_answer = ""
is_reasoning = False
reasoning_started = False
for chunk in response:
if chunk.choices and chunk.choices[0].delta:
delta = chunk.choices[0].delta
if hasattr(delta, 'content') and delta.content:
content = delta.content
full_response += content
# 检测reasoning标记
if "<reasoning>" in content:
is_reasoning = True
reasoning_started = True
# 提取<reasoning>之前的内容添加到final_answer
before_reasoning = content.split("<reasoning>")[0]
if before_reasoning:
final_answer += before_reasoning
# 提取<reasoning>之后的内容开始reasoning
after_tag = content.split("<reasoning>")[1] if len(content.split("<reasoning>")) > 1 else ""
reasoning_content += after_tag
elif "</reasoning>" in content:
# 提取</reasoning>之前的内容添加到reasoning
before_tag = content.split("</reasoning>")[0]
reasoning_content += before_tag
is_reasoning = False
# 提取</reasoning>之后的内容添加到final_answer
after_reasoning = content.split("</reasoning>")[1] if len(content.split("</reasoning>")) > 1 else ""
final_answer += after_reasoning
elif is_reasoning:
reasoning_content += content
else:
final_answer += content
# 实时输出
if reasoning_started:
yield reasoning_content, final_answer
else:
yield "", final_answer
# 添加生成时间
elapsed_time = time.time() - start_time
time_info = f"\n\n⏱️ 生成用时: {elapsed_time:.2f}秒"
final_answer += time_info
yield reasoning_content, final_answer
except Exception as e:
error_msg = str(e)
if "api_key" in error_msg.lower():
yield "", "❌ API密钥错误:请检查密钥是否有效"
elif "network" in error_msg.lower() or "connection" in error_msg.lower():
yield "", "❌ 网络连接错误:请检查网络连接"
else:
yield "", f"❌ API调用错误: {error_msg[:200]}"
# 创建Gradio界面
with gr.Blocks(title="Step-3", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🤖 Step-3
""")
with gr.Row():
with gr.Column(scale=1):
# 输入区域
image_input = gr.Image(
label="上传图片(可选)",
type="pil",
height=300
)
prompt_input = gr.Textbox(
label="提示词",
placeholder="输入你的问题或描述...",
lines=3,
value=""
)
with gr.Accordion("高级设置", open=False):
model_select = gr.Dropdown(
choices=MODELS,
value=MODELS[0],
label="选择模型"
)
temperature_slider = gr.Slider(
minimum=0,
maximum=1,
value=0.7,
step=0.1,
label="Temperature"
)
max_tokens_slider = gr.Slider(
minimum=100,
maximum=4000,
value=2000,
step=100,
label="最大输出长度"
)
submit_btn = gr.Button("🚀 开始分析", variant="primary")
clear_btn = gr.Button("🗑️ 清空", variant="secondary")
with gr.Column(scale=1):
# 推理过程展示
with gr.Accordion("💭 推理过程 (CoT)", open=True):
reasoning_output = gr.Textbox(
label="思考过程",
lines=10,
max_lines=15,
show_copy_button=True,
interactive=False
)
# 最终答案展示
answer_output = gr.Textbox(
label="📝 分析结果",
lines=15,
max_lines=25,
show_copy_button=True,
interactive=False
)
# 事件处理 - 流式输出到两个文本框
submit_btn.click(
fn=call_step_api,
inputs=[
image_input,
prompt_input,
model_select,
temperature_slider,
max_tokens_slider
],
outputs=[reasoning_output, answer_output],
show_progress=True
)
clear_btn.click(
fn=lambda: (None, "", "", ""),
inputs=[],
outputs=[image_input, prompt_input, reasoning_output, answer_output]
)
# 页脚
gr.Markdown("""
---
Powered by [Step-3](https://www.stepfun.com/)
""")
# 启动应用
if __name__ == "__main__":
demo.launch()