import gradio as gr import time import base64 from openai import OpenAI import os from io import BytesIO from PIL import Image # 配置 BASE_URL = "https://api.stepfun.com/v1" # 从环境变量获取API密钥 STEP_API_KEY = os.environ.get("STEP_API_KEY", "") # 可选模型 MODELS = ["step-3", "step-r1-v-mini"] def image_to_base64(image): """将PIL图像转换为base64字符串""" if image is None: return None if isinstance(image, Image.Image): buffered = BytesIO() image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode('utf-8') return img_str return None def call_step_api_stream(message, history, model, temperature, max_tokens, image=None): """调用Step API进行流式对话""" if not message and not image: yield history return if not STEP_API_KEY: history.append([message or "图片", "❌ API密钥未配置。请在 Settings 中添加 STEP_API_KEY。"]) yield history return # 构造消息历史 messages = [] # 添加历史对话 for h in history: if h[0]: # 用户消息 messages.append({"role": "user", "content": h[0]}) if h[1]: # 助手回复 messages.append({"role": "assistant", "content": h[1]}) # 构造当前消息 if image is not None: # 有图片的情况 try: base64_image = image_to_base64(image) if base64_image is None: history.append([message or "图片", "❌ 图片处理失败"]) yield history return current_content = [ {"type": "image_url", "image_url": {"url": f"data:image/jpg;base64,{base64_image}", "detail": "high"}} ] if message: current_content.append({"type": "text", "text": message}) messages.append({"role": "user", "content": current_content}) display_message = f"[图片] {message}" if message else "[图片]" except Exception as e: history.append([message or "图片", f"❌ 图片处理错误: {str(e)}"]) yield history return else: # 纯文本 messages.append({"role": "user", "content": message}) display_message = message # 添加到历史记录 history.append([display_message, ""]) # 创建客户端 try: client = OpenAI(api_key=STEP_API_KEY, base_url=BASE_URL) except Exception as e: history[-1][1] = f"❌ 客户端初始化失败: {str(e)}" yield history return # 调用API try: response = client.chat.completions.create( model=model, messages=messages, temperature=temperature, max_tokens=max_tokens, stream=True ) # 处理流式响应 full_response = "" for chunk in response: if chunk.choices and len(chunk.choices) > 0: delta = chunk.choices[0].delta if hasattr(delta, 'content') and delta.content: full_response += delta.content history[-1][1] = full_response yield history except Exception as e: history[-1][1] = f"❌ API请求失败: {str(e)}" yield history def user_input(message, history, image): """处理用户输入""" if message or image: return "", history, None return message, history, image def clear_history(): """清空对话历史""" return [], None, "" # 创建Gradio界面 with gr.Blocks(title="Step-3", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🤖 Step-3 Hello, I am Step-3! """) with gr.Row(): with gr.Column(scale=3): # 对话界面 chatbot = gr.Chatbot( height=500, show_label=False, elem_id="chatbot", bubble_full_width=False ) with gr.Row(): with gr.Column(scale=8): msg = gr.Textbox( label="输入消息", placeholder="输入你的问题...", lines=1, max_lines=5, show_label=False, elem_id="msg", container=False ) with gr.Column(scale=1, min_width=100): submit_btn = gr.Button("发送", variant="primary") with gr.Column(scale=1, min_width=100): clear_btn = gr.Button("清空对话") # 图片上传 with gr.Row(): image_input = gr.Image( label="上传图片(可选)", type="pil", height=150, scale=1 ) with gr.Column(scale=1): # 设置面板 gr.Markdown("### ⚙️ 设置") model_select = gr.Dropdown( choices=MODELS, value=MODELS[0], label="模型选择", interactive=True ) temperature_slider = gr.Slider( minimum=0, maximum=1, value=0.7, step=0.1, label="Temperature", interactive=True ) max_tokens_slider = gr.Slider( minimum=100, maximum=4000, value=2000, step=100, label="最大输出长度", interactive=True ) gr.Markdown(""" ### 📝 使用说明 - 支持多轮对话 - 可上传图片进行分析 - 支持纯文本对话 - 历史记录会保留上下文 """) # 事件处理 msg.submit( user_input, [msg, chatbot, image_input], [msg, chatbot, image_input], queue=False ).then( call_step_api_stream, [msg, chatbot, model_select, temperature_slider, max_tokens_slider, image_input], chatbot ) submit_btn.click( user_input, [msg, chatbot, image_input], [msg, chatbot, image_input], queue=False ).then( call_step_api_stream, [msg, chatbot, model_select, temperature_slider, max_tokens_slider, image_input], chatbot ) clear_btn.click( clear_history, None, [chatbot, image_input, msg], queue=False ) # 页脚 gr.Markdown(""" ---
StepFun Logo
Powered by StepFun
""") # 启动应用 if __name__ == "__main__": demo.queue() demo.launch()