import io import os import base64 from typing import Optional import httpx from PIL import Image import gradio as gr from fastapi import FastAPI # ========== 配置 ========== STEPFUN_ENDPOINT = os.getenv("STEPFUN_ENDPOINT", "https://api.stepfun.com/v1") MODEL_NAME = os.getenv("STEPFUN_MODEL", "step-3") TITLE = "StepFun · 图像问答(step-3)" DESC = "上传图片 + 输入问题,走 StepFun OpenAI 兼容接口 /chat/completions" # ========================= def _get_api_key() -> Optional[str]: # 兼容两种环境变量名 return os.getenv("OPENAI_API_KEY") or os.getenv("STEPFUN_KEY") def _pil_to_data_url(img: Image.Image, fmt: str = "PNG") -> str: buf = io.BytesIO() img.save(buf, format=fmt) b64 = base64.b64encode(buf.getvalue()).decode("utf-8") mime = "image/png" if fmt.upper() == "PNG" else "image/jpeg" return f"data:{mime};base64,{b64}" def _post_chat(messages: list, temperature: float = 0.7, timeout: float = 60.0) -> str: key = _get_api_key() if not key: raise RuntimeError( "API Key 未设置。请在 Space 的 Settings → Variables and secrets 添加:\n" "OPENAI_API_KEY 或 STEPFUN_KEY(值为 StepFun API Key)。" ) url = f"{STEPFUN_ENDPOINT.rstrip('/')}/chat/completions" headers = { "Authorization": f"Bearer {key}", "Content-Type": "application/json", } payload = { "model": MODEL_NAME, "messages": messages, "temperature": temperature, } r = httpx.post(url, headers=headers, json=payload, timeout=timeout) r.raise_for_status() data = r.json() # 兼容常见返回结构 return data["choices"][0]["message"]["content"] def infer(image: Optional[Image.Image], question: Optional[str]) -> str: if image is None: return "请先上传图片再提问。" q = (question or "").strip() or "请描述这张图片。" data_url = _pil_to_data_url(image, fmt="PNG") messages = [ { "role": "user", "content": [ {"type": "image_url", "image_url": {"url": data_url}}, {"type": "text", "text": q}, ], } ] try: return _post_chat(messages) except httpx.HTTPStatusError as e: return f"调用失败(HTTP {e.response.status_code}):{e.response.text}" except Exception as e: return f"调用失败:{repr(e)}" # ------- Gradio 界面 ------- demo = gr.Interface( fn=infer, inputs=[ gr.Image(type="pil", label="上传图片"), gr.Textbox(label="问题", placeholder="例如:这是什么菜?怎么做?"), ], outputs=gr.Textbox(label="回答"), title=TITLE, description=DESC, ) # ------- FastAPI 宿主应用(覆盖 /info,避免 gradio_client 的 schema 解析) ------- fastapi_app = FastAPI() @fastapi_app.get("/health") def health(): return {"status": "ok"} @fastapi_app.get("/info") def info_stub(): # 返回一个最小可用的对象,绕过 gradio 的 api_info 复杂逻辑 return { "api": False, "message": "API docs 已禁用(此路由由外部 FastAPI 覆盖以规避依赖冲突)。" } # 挂载 Gradio 到根路径 app = gr.mount_gradio_app(fastapi_app, demo, path="/") # 本地调试:python app.py if __name__ == "__main__": import uvicorn port = int(os.getenv("PORT", "7860")) # 注意:本地调试可以启;Spaces 不会走这里 uvicorn.run(app, host="0.0.0.0", port=port)