# app.py import os import io import base64 from typing import List, Dict, Any, Optional import httpx import gradio as gr from PIL import Image # ========= 基本配置(可用环境变量覆写)========= STEPFUN_ENDPOINT = os.getenv("STEPFUN_ENDPOINT", "https://api.stepfun.com/v1") MODEL_NAME = os.getenv("STEPFUN_MODEL", "step-3") # 可改为 step-r1-v-mini REQUEST_TIMEOUT = float(os.getenv("REQUEST_TIMEOUT", "60")) MAX_CHARS = int(os.getenv("MAX_CHARS", "20000")) # 返回文本最大展示长度 # =========================================== def _get_api_key() -> Optional[str]: """ 优先读 OPENAI_API_KEY(OpenAI 兼容习惯),否则读 STEPFUN_KEY。 在 HF Space → Settings → Variables and secrets 添加其中一个即可。 """ return os.getenv("OPENAI_API_KEY") or os.getenv("STEPFUN_KEY") def _pil_to_data_url(img: Image.Image, fmt: str = "PNG") -> str: """ PIL.Image -> data:image/...;base64,... 字符串(适配 OpenAI 兼容的 image_url) """ buf = io.BytesIO() img.save(buf, format=fmt) b64 = base64.b64encode(buf.getvalue()).decode("utf-8") mime = "image/png" if fmt.upper() == "PNG" else "image/jpeg" return f"data:{mime};base64,{b64}" def _truncate(text: str, limit: int = MAX_CHARS) -> str: """ 软截断,避免一次性把超长内容写给前端导致传输异常。 """ if text is None: return "" if len(text) <= limit: return text return text[:limit] + "\n\n[输出过长,已截断]" def _post_chat(messages: List[Dict[str, Any]], temperature: float = 0.7, max_tokens: Optional[int] = None) -> str: """ 直接请求 StepFun 的 /v1/chat/completions(OpenAI 兼容)。 返回纯字符串,不抛异常,交由上层统一处理。 """ api_key = _get_api_key() if not api_key: # 不 raise,让 UI 只显示字符串,避免 Uvicorn/h11 生成异常页 return ("[配置错误] 未检测到 API Key。\n" "请到 Space 的 Settings → Variables and secrets 添加:\n" " OPENAI_API_KEY=你的 StepFun API Key (或使用 STEPFUN_KEY)") url = f"{STEPFUN_ENDPOINT.rstrip('/')}/chat/completions" headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json", } payload: Dict[str, Any] = { "model": MODEL_NAME, "messages": messages, "temperature": temperature, } if max_tokens is not None: payload["max_tokens"] = max_tokens try: with httpx.Client(timeout=REQUEST_TIMEOUT) as client: resp = client.post(url, headers=headers, json=payload) resp.raise_for_status() data = resp.json() # 标准 OpenAI 兼容返回 content = data["choices"][0]["message"]["content"] return _truncate(str(content)) except httpx.HTTPStatusError as e: body = e.response.text if e.response is not None else repr(e) code = getattr(e.response, "status_code", "?") return _truncate(f"[HTTP {code}] 接口错误:\n{body}") except Exception as e: # 网络/解析/其他错误 return _truncate(f"[调用失败] {repr(e)}") def chat_with_step3(image: Optional[Image.Image], question: str, temperature: float) -> str: """ Gradio 回调:接收图片与问题文本,返回字符串。 任何异常都“吃掉”,只返回文本,防止框架层渲染异常页。 """ try: # 输入兜底 if image is None and not question.strip(): return "请上传一张图片,或至少输入一个问题。" content: List[Dict[str, Any]] = [] if image is not None: data_url = _pil_to_data_url(image, fmt="PNG") content.append({"type": "image_url", "image_url": {"url": data_url}}) if question.strip(): content.append({"type": "text", "text": question.strip()}) else: content.append({"type": "text", "text": "请描述这张图片。"}) messages = [{"role": "user", "content": content}] return _post_chat(messages, temperature=temperature) except Exception as e: # 再兜一层底,避免任何未捕获异常冒泡 return _truncate(f"[运行时错误] {repr(e)}") # ================== Gradio UI ================== with gr.Blocks(title="Step3 (StepFun API Demo)", analytics_enabled=False) as demo: gr.Markdown( """ # Step3 · 图文对话演示(StepFun OpenAI 兼容接口) - 在 **Settings → Variables and secrets** 添加 `OPENAI_API_KEY`(或 `STEPFUN_KEY`)后即可使用 - 后端通过 `https://api.stepfun.com/v1/chat/completions`,不依赖 `openai` SDK """ ) with gr.Row(): image = gr.Image(type="pil", label="上传图片(可选)") question = gr.Textbox(label="问题", placeholder="例如:帮我看看这是什么菜,怎么做?") temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature") submit = gr.Button("提交", variant="primary") output = gr.Textbox(label="模型回答", lines=12) submit.click(fn=chat_with_step3, inputs=[image, question, temperature], outputs=[output]) gr.Markdown( """ **小贴士:** - 如见到 `[配置错误] 未检测到 API Key`,请检查 Space 的 Secrets - 如需改模型:设置环境变量 `STEPFUN_MODEL`,或在代码顶部修改默认值 - 如输出非常长,会自动做软截断避免传输异常 """ ) if __name__ == "__main__": # 兼容不同 gradio 版本的 queue() 参数签名 try: demo.queue(concurrency_count=2, max_size=32).launch(show_error=False, quiet=True) except TypeError: # 老签名:只接受并发(位置参数) try: demo.queue(2).launch(show_error=False, quiet=True) except TypeError: # 最保守:不传参数 demo.queue().launch(show_error=False, quiet=True)