imitation_game / text_gen.py
stibiumghost's picture
Update text_gen.py
e5cb5e2
raw
history blame
1.65 kB
import transformers
import string
model_names = ['microsoft/GODEL-v1_1-base-seq2seq',
'facebook/blenderbot-1B-distill',
'microsoft/DialoGPT-medium']
tokenizers = [transformers.AutoTokenizer.from_pretrained(model_names[0]),
transformers.BlenderbotTokenizer.from_pretrained(model_names[1]),
transformers.GPT2Tokenizer.from_pretrained(model_names[2])]
model = [transformers.AutoModelForSeq2SeqLM.from_pretrained(model_names[0]),
transformers.BlenderbotForConditionalGeneration.from_pretrained(model_names[1]),
transformers.GPT2LMHeadModel.from_pretrained(model_names[2])]
def generate_text(text, context, model_name, model, tokenizer, minimum=15, maximum=300):
text = f'{context} {text}'
if 'GODEL' in model_name:
text = 'Instruction: you need to response discreetly. [CONTEXT] ' + text
else:
text = text.replace(' EOS ', tokenizer.eos_token) + tokenizer.eos_token
input_ids = tokenizer(text, return_tensors="pt").input_ids
outputs = model.generate(input_ids, max_new_tokens=maximum, min_new_tokens=minimum, top_p=0.9, do_sample=True)
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
return capitalization(output)
def capitalization(line):
line, end = line[:-1], line[-1]
for mark in '.?!':
line = f'{mark} '.join([part.strip()[0].upper() + part.strip()[1:] for part in line.split(mark) if len(part) > 1])
line = ' '.join([word.capitalize() if word.translate(str.maketrans('', '', string.punctuation)) == 'i'
else word for word in line.split()])
return line + end