stivenDR14
commited on
Commit
·
fb513c1
1
Parent(s):
81917a3
first try
Browse files- .gitignore +8 -0
- README_AGENT.md +180 -0
- agent.py +390 -0
- app.py +16 -13
- requirements.txt +19 -2
.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
.venv
|
3 |
+
__pycache__
|
4 |
+
*.pyc
|
5 |
+
*.pyo
|
6 |
+
*.pyd
|
7 |
+
*.pyw
|
8 |
+
*.pyz
|
README_AGENT.md
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🤖 Advanced AI Agent with LlamaIndex
|
2 |
+
|
3 |
+
Este es un agente de IA avanzado construido con LlamaIndex que incluye capacidades de CodeAct, búsqueda web y herramientas matemáticas.
|
4 |
+
|
5 |
+
## 🚀 Características
|
6 |
+
|
7 |
+
### 🧠 Capacidades del Agente
|
8 |
+
|
9 |
+
- **Razonamiento Avanzado**: Utiliza LlamaIndex con modelos de Hugging Face
|
10 |
+
- **CodeAct Agent**: Puede escribir y ejecutar código Python para resolver problemas complejos
|
11 |
+
- **Herramientas Matemáticas**: Cálculos básicos y avanzados
|
12 |
+
- **Búsqueda Web**: Integración con DuckDuckGo y Wikipedia
|
13 |
+
- **Modo Fallback**: Funciona incluso sin configuración completa
|
14 |
+
|
15 |
+
### 🛠 Herramientas Disponibles
|
16 |
+
|
17 |
+
1. **Matemáticas**: suma, resta, multiplicación, división, potencias, porcentajes
|
18 |
+
2. **Búsqueda DuckDuckGo**: Búsquedas web en tiempo real
|
19 |
+
3. **Wikipedia**: Búsqueda de información factual
|
20 |
+
4. **Peticiones Web**: Llamadas a APIs
|
21 |
+
5. **Ejecución de Código**: Python con librerías como numpy, pandas, math
|
22 |
+
|
23 |
+
## ⚙️ Configuración
|
24 |
+
|
25 |
+
### 1. Instalar Dependencias
|
26 |
+
|
27 |
+
```bash
|
28 |
+
pip install -r requirements.txt
|
29 |
+
```
|
30 |
+
|
31 |
+
### 2. Configurar Variables de Entorno
|
32 |
+
|
33 |
+
Crea un archivo `.env` con:
|
34 |
+
|
35 |
+
```bash
|
36 |
+
# Token de Hugging Face (opcional pero recomendado)
|
37 |
+
HUGGINGFACE_TOKEN=tu_token_aqui
|
38 |
+
```
|
39 |
+
|
40 |
+
Para obtener tu token:
|
41 |
+
|
42 |
+
1. Ve a [Hugging Face Settings](https://huggingface.co/settings/tokens)
|
43 |
+
2. Crea un nuevo token
|
44 |
+
3. Copia el token en tu archivo `.env`
|
45 |
+
|
46 |
+
### 3. Usar el Agente
|
47 |
+
|
48 |
+
#### Desde Python:
|
49 |
+
|
50 |
+
```python
|
51 |
+
from agent import BasicAgent
|
52 |
+
|
53 |
+
# Inicializar el agente
|
54 |
+
agent = BasicAgent()
|
55 |
+
|
56 |
+
# Hacer una pregunta
|
57 |
+
result = agent("¿Cuál es la raíz cuadrada de 144?")
|
58 |
+
print(result)
|
59 |
+
```
|
60 |
+
|
61 |
+
#### Desde la Interfaz Gradio:
|
62 |
+
|
63 |
+
```bash
|
64 |
+
python app.py
|
65 |
+
```
|
66 |
+
|
67 |
+
Luego ve a `http://127.0.0.1:7860`
|
68 |
+
|
69 |
+
## 🎯 Formato de Respuestas
|
70 |
+
|
71 |
+
El agente está configurado para dar respuestas en el formato:
|
72 |
+
|
73 |
+
```
|
74 |
+
[Explicación del razonamiento...]
|
75 |
+
|
76 |
+
FINAL ANSWER: [RESPUESTA_FINAL]
|
77 |
+
```
|
78 |
+
|
79 |
+
### Reglas para FINAL ANSWER:
|
80 |
+
|
81 |
+
- **Números**: Sin comas ni símbolos (ej: `42` no `42,000` o `$42`)
|
82 |
+
- **Texto**: Sin artículos ni abreviaciones (ej: `New York` no `NYC`)
|
83 |
+
- **Listas**: Separadas por comas siguiendo las reglas anteriores
|
84 |
+
|
85 |
+
## 📝 Ejemplos de Uso
|
86 |
+
|
87 |
+
### Matemáticas Básicas
|
88 |
+
|
89 |
+
```python
|
90 |
+
agent("¿Cuánto es 15 + 27?")
|
91 |
+
# FINAL ANSWER: 42
|
92 |
+
```
|
93 |
+
|
94 |
+
### Cálculos Complejos
|
95 |
+
|
96 |
+
```python
|
97 |
+
agent("Calcula el 15% de 240 y súmale 50")
|
98 |
+
# El agente escribirá código: (240 * 15 / 100) + 50
|
99 |
+
# FINAL ANSWER: 86
|
100 |
+
```
|
101 |
+
|
102 |
+
### Búsqueda de Información
|
103 |
+
|
104 |
+
```python
|
105 |
+
agent("¿Cuál es la capital de Francia?")
|
106 |
+
# Buscará en Wikipedia
|
107 |
+
# FINAL ANSWER: Paris
|
108 |
+
```
|
109 |
+
|
110 |
+
### Problemas Complejos
|
111 |
+
|
112 |
+
```python
|
113 |
+
agent("Necesito calcular la suma de los primeros 10 números de Fibonacci")
|
114 |
+
# El agente escribirá código para calcular Fibonacci
|
115 |
+
# FINAL ANSWER: 143
|
116 |
+
```
|
117 |
+
|
118 |
+
## 🔧 Modos de Funcionamiento
|
119 |
+
|
120 |
+
### 1. Modo Completo (con HUGGINGFACE_TOKEN)
|
121 |
+
|
122 |
+
- Utiliza modelos de IA avanzados
|
123 |
+
- CodeAct Agent completo
|
124 |
+
- Todas las herramientas disponibles
|
125 |
+
|
126 |
+
### 2. Modo Básico (sin token)
|
127 |
+
|
128 |
+
- Procesamiento básico con expresiones regulares
|
129 |
+
- Matemáticas simples
|
130 |
+
- Respuestas limitadas pero funcionales
|
131 |
+
|
132 |
+
## 🚨 Importante para Producción
|
133 |
+
|
134 |
+
⚠️ **Seguridad**: El agente puede ejecutar código Python. En producción:
|
135 |
+
|
136 |
+
- Usar sandboxing (Docker, contenedores)
|
137 |
+
- Validar entradas del usuario
|
138 |
+
- Limitar acceso a recursos del sistema
|
139 |
+
|
140 |
+
## 🐛 Resolución de Problemas
|
141 |
+
|
142 |
+
### Error: No se puede importar LlamaIndex
|
143 |
+
|
144 |
+
```bash
|
145 |
+
pip install --upgrade llama-index-core llama-index-llms-huggingface
|
146 |
+
```
|
147 |
+
|
148 |
+
### Error: Token inválido
|
149 |
+
|
150 |
+
- Verifica que tu token de Hugging Face sea válido
|
151 |
+
- Asegúrate que el archivo `.env` esté en el directorio correcto
|
152 |
+
|
153 |
+
### Error: Modelo no encontrado
|
154 |
+
|
155 |
+
- Algunos modelos requieren acceso especial
|
156 |
+
- Prueba con modelos públicos como `microsoft/DialoGPT-medium`
|
157 |
+
|
158 |
+
## 📚 Personalización
|
159 |
+
|
160 |
+
### Cambiar el Modelo
|
161 |
+
|
162 |
+
En `agent.py`, modifica:
|
163 |
+
|
164 |
+
```python
|
165 |
+
model_name="tu-modelo-preferido"
|
166 |
+
```
|
167 |
+
|
168 |
+
### Agregar Nuevas Herramientas
|
169 |
+
|
170 |
+
1. Define tu función
|
171 |
+
2. Crea un `FunctionTool.from_defaults(fn=tu_funcion)`
|
172 |
+
3. Agrégala a `self.tools`
|
173 |
+
|
174 |
+
### Personalizar el Prompt
|
175 |
+
|
176 |
+
Modifica la variable `enhanced_prompt` en el método `__call__`
|
177 |
+
|
178 |
+
---
|
179 |
+
|
180 |
+
¡Tu agente de IA está listo para resolver problemas complejos! 🎉
|
agent.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Intelligent AI Agent using LlamaIndex with CodeAct capabilities
|
3 |
+
This module contains the agent class with advanced tools and reasoning.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import asyncio
|
8 |
+
import io
|
9 |
+
import contextlib
|
10 |
+
import ast
|
11 |
+
import traceback
|
12 |
+
from typing import Any, Dict, Tuple, List
|
13 |
+
|
14 |
+
# Load environment variables from .env file
|
15 |
+
try:
|
16 |
+
from dotenv import load_dotenv
|
17 |
+
load_dotenv()
|
18 |
+
print("✅ .env file loaded successfully")
|
19 |
+
except ImportError:
|
20 |
+
print("⚠️ python-dotenv not available, .env file not loaded")
|
21 |
+
except Exception as e:
|
22 |
+
print(f"⚠️ Error loading .env file: {e}")
|
23 |
+
|
24 |
+
# LlamaIndex imports
|
25 |
+
try:
|
26 |
+
from llama_index.core.agent.workflow import CodeActAgent
|
27 |
+
from llama_index.core.workflow import Context
|
28 |
+
from llama_index.core.agent.workflow import (
|
29 |
+
ToolCall,
|
30 |
+
ToolCallResult,
|
31 |
+
AgentStream,
|
32 |
+
)
|
33 |
+
from llama_index.llms.huggingface import HuggingFaceLLM
|
34 |
+
from llama_index.core.tools import FunctionTool
|
35 |
+
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
|
36 |
+
from llama_index.tools.wikipedia import WikipediaToolSpec
|
37 |
+
from llama_index.tools.requests import RequestsToolSpec
|
38 |
+
LLAMA_INDEX_AVAILABLE = True
|
39 |
+
except ImportError as e:
|
40 |
+
print(f"LlamaIndex imports not available: {e}")
|
41 |
+
LLAMA_INDEX_AVAILABLE = False
|
42 |
+
|
43 |
+
MODEL = "microsoft/Phi-3.5-mini-instruct"
|
44 |
+
|
45 |
+
class SimpleCodeExecutor:
|
46 |
+
"""
|
47 |
+
A simple code executor that runs Python code with state persistence.
|
48 |
+
NOTE: not safe for production use! Use with caution.
|
49 |
+
"""
|
50 |
+
|
51 |
+
def __init__(self, locals_dict: Dict[str, Any], globals_dict: Dict[str, Any]):
|
52 |
+
"""Initialize the code executor."""
|
53 |
+
self.globals = globals_dict
|
54 |
+
self.locals = locals_dict
|
55 |
+
|
56 |
+
def execute(self, code: str) -> Tuple[bool, str, Any]:
|
57 |
+
"""Execute Python code and capture output and return values."""
|
58 |
+
stdout = io.StringIO()
|
59 |
+
stderr = io.StringIO()
|
60 |
+
|
61 |
+
output = ""
|
62 |
+
return_value = None
|
63 |
+
try:
|
64 |
+
with contextlib.redirect_stdout(stdout), contextlib.redirect_stderr(stderr):
|
65 |
+
try:
|
66 |
+
tree = ast.parse(code)
|
67 |
+
last_node = tree.body[-1] if tree.body else None
|
68 |
+
|
69 |
+
if isinstance(last_node, ast.Expr):
|
70 |
+
last_line = code.rstrip().split("\n")[-1]
|
71 |
+
exec_code = (
|
72 |
+
code[: -len(last_line)]
|
73 |
+
+ "\n__result__ = "
|
74 |
+
+ last_line
|
75 |
+
)
|
76 |
+
exec(exec_code, self.globals, self.locals)
|
77 |
+
return_value = self.locals.get("__result__")
|
78 |
+
else:
|
79 |
+
exec(code, self.globals, self.locals)
|
80 |
+
except:
|
81 |
+
exec(code, self.globals, self.locals)
|
82 |
+
|
83 |
+
output = stdout.getvalue()
|
84 |
+
if stderr.getvalue():
|
85 |
+
output += "\n" + stderr.getvalue()
|
86 |
+
|
87 |
+
except Exception as e:
|
88 |
+
output = f"Error: {type(e).__name__}: {str(e)}\n"
|
89 |
+
output += traceback.format_exc()
|
90 |
+
|
91 |
+
if return_value is not None:
|
92 |
+
output += "\n\n" + str(return_value)
|
93 |
+
|
94 |
+
return output
|
95 |
+
|
96 |
+
|
97 |
+
class BasicAgent:
|
98 |
+
"""
|
99 |
+
Advanced AI Agent using LlamaIndex with CodeAct capabilities and multiple tools.
|
100 |
+
"""
|
101 |
+
|
102 |
+
def __init__(self):
|
103 |
+
"""Initialize the agent with LLM, tools, and code executor."""
|
104 |
+
print("Initializing Advanced AI Agent with LlamaIndex...")
|
105 |
+
|
106 |
+
# Get Hugging Face token
|
107 |
+
self.hf_token = os.getenv("HUGGINGFACE_TOKEN")
|
108 |
+
print(self.hf_token)
|
109 |
+
if not self.hf_token:
|
110 |
+
print("Warning: HUGGINGFACE_TOKEN not found. Using default model.")
|
111 |
+
|
112 |
+
# Initialize LLM
|
113 |
+
self._initialize_llm()
|
114 |
+
|
115 |
+
# Initialize tools
|
116 |
+
self._initialize_tools()
|
117 |
+
|
118 |
+
# Initialize code executor
|
119 |
+
self._initialize_code_executor()
|
120 |
+
|
121 |
+
# Initialize CodeAct Agent
|
122 |
+
self._initialize_agent()
|
123 |
+
|
124 |
+
print("Advanced AI Agent initialized successfully.")
|
125 |
+
|
126 |
+
def _initialize_llm(self):
|
127 |
+
"""Initialize the Hugging Face LLM."""
|
128 |
+
if not LLAMA_INDEX_AVAILABLE:
|
129 |
+
print("LlamaIndex not available, using basic mode")
|
130 |
+
self.llm = None
|
131 |
+
return
|
132 |
+
|
133 |
+
try:
|
134 |
+
# Using a capable model for reasoning and code generation
|
135 |
+
# Note: For production, consider using models like meta-llama/Llama-2-7b-chat-hf or similar
|
136 |
+
model_kwargs = {"temperature": 0.1, "max_length": 512}
|
137 |
+
generate_kwargs = {"temperature": 0.1, "do_sample": True}
|
138 |
+
|
139 |
+
if self.hf_token:
|
140 |
+
# Use token if available
|
141 |
+
self.llm = HuggingFaceLLM(
|
142 |
+
model_name=MODEL,
|
143 |
+
tokenizer_name=MODEL, # Explicitly use the same model for tokenizer
|
144 |
+
model_kwargs=model_kwargs,
|
145 |
+
generate_kwargs=generate_kwargs,
|
146 |
+
tokenizer_kwargs={"token": self.hf_token},
|
147 |
+
)
|
148 |
+
else:
|
149 |
+
# Try without token for public models
|
150 |
+
self.llm = HuggingFaceLLM(
|
151 |
+
model_name=MODEL,
|
152 |
+
tokenizer_name=MODEL, # Explicitly use the same model for tokenizer
|
153 |
+
model_kwargs=model_kwargs,
|
154 |
+
generate_kwargs=generate_kwargs,
|
155 |
+
)
|
156 |
+
print("✅ LLM initialized successfully")
|
157 |
+
except Exception as e:
|
158 |
+
print(f"Error initializing LLM: {e}")
|
159 |
+
# Fallback to a basic setup
|
160 |
+
self.llm = None
|
161 |
+
|
162 |
+
def _initialize_tools(self):
|
163 |
+
"""Initialize all available tools."""
|
164 |
+
self.tools = []
|
165 |
+
|
166 |
+
# Store basic math functions for fallback mode
|
167 |
+
self.math_functions = {
|
168 |
+
'add': lambda a, b: a + b,
|
169 |
+
'subtract': lambda a, b: a - b,
|
170 |
+
'multiply': lambda a, b: a * b,
|
171 |
+
'divide': lambda a, b: a / b if b != 0 else "Error: Division by zero",
|
172 |
+
'power': lambda a, b: a ** b,
|
173 |
+
'percentage': lambda v, p: (v * p) / 100,
|
174 |
+
}
|
175 |
+
|
176 |
+
if not LLAMA_INDEX_AVAILABLE:
|
177 |
+
print("Tools initialization skipped - LlamaIndex not available")
|
178 |
+
return
|
179 |
+
|
180 |
+
# Mathematical tools
|
181 |
+
def add_numbers(a: float, b: float) -> float:
|
182 |
+
"""Add two numbers together."""
|
183 |
+
return a + b
|
184 |
+
|
185 |
+
def subtract_numbers(a: float, b: float) -> float:
|
186 |
+
"""Subtract second number from first number."""
|
187 |
+
return a - b
|
188 |
+
|
189 |
+
def multiply_numbers(a: float, b: float) -> float:
|
190 |
+
"""Multiply two numbers."""
|
191 |
+
return a * b
|
192 |
+
|
193 |
+
def divide_numbers(a: float, b: float) -> float:
|
194 |
+
"""Divide first number by second number."""
|
195 |
+
if b == 0:
|
196 |
+
return "Error: Division by zero"
|
197 |
+
return a / b
|
198 |
+
|
199 |
+
def power_numbers(a: float, b: float) -> float:
|
200 |
+
"""Raise first number to the power of second number."""
|
201 |
+
return a ** b
|
202 |
+
|
203 |
+
def calculate_percentage(value: float, percentage: float) -> float:
|
204 |
+
"""Calculate percentage of a value."""
|
205 |
+
return (value * percentage) / 100
|
206 |
+
|
207 |
+
# Create function tools
|
208 |
+
try:
|
209 |
+
math_tools = [
|
210 |
+
FunctionTool.from_defaults(fn=add_numbers),
|
211 |
+
FunctionTool.from_defaults(fn=subtract_numbers),
|
212 |
+
FunctionTool.from_defaults(fn=multiply_numbers),
|
213 |
+
FunctionTool.from_defaults(fn=divide_numbers),
|
214 |
+
FunctionTool.from_defaults(fn=power_numbers),
|
215 |
+
FunctionTool.from_defaults(fn=calculate_percentage),
|
216 |
+
]
|
217 |
+
self.tools.extend(math_tools)
|
218 |
+
print("✅ Math tools initialized")
|
219 |
+
except Exception as e:
|
220 |
+
print(f"Warning: Could not initialize math tools: {e}")
|
221 |
+
|
222 |
+
# Initialize search tools
|
223 |
+
try:
|
224 |
+
# DuckDuckGo search
|
225 |
+
ddg_spec = DuckDuckGoSearchToolSpec()
|
226 |
+
ddg_tools = ddg_spec.to_tool_list()
|
227 |
+
self.tools.extend(ddg_tools)
|
228 |
+
print("✅ DuckDuckGo search tool initialized")
|
229 |
+
except Exception as e:
|
230 |
+
print(f"Warning: Could not initialize DuckDuckGo tool: {e}")
|
231 |
+
|
232 |
+
try:
|
233 |
+
# Wikipedia search
|
234 |
+
wiki_spec = WikipediaToolSpec()
|
235 |
+
wiki_tools = wiki_spec.to_tool_list()
|
236 |
+
self.tools.extend(wiki_tools)
|
237 |
+
print("✅ Wikipedia tool initialized")
|
238 |
+
except Exception as e:
|
239 |
+
print(f"Warning: Could not initialize Wikipedia tool: {e}")
|
240 |
+
|
241 |
+
try:
|
242 |
+
# Web requests tool
|
243 |
+
requests_spec = RequestsToolSpec()
|
244 |
+
requests_tools = requests_spec.to_tool_list()
|
245 |
+
self.tools.extend(requests_tools)
|
246 |
+
print("✅ Web requests tool initialized")
|
247 |
+
except Exception as e:
|
248 |
+
print(f"Warning: Could not initialize requests tool: {e}")
|
249 |
+
|
250 |
+
print(f"✅ Total {len(self.tools)} tools initialized")
|
251 |
+
|
252 |
+
def _initialize_code_executor(self):
|
253 |
+
"""Initialize the code executor with necessary imports and functions."""
|
254 |
+
# Prepare locals with math functions
|
255 |
+
code_locals = {
|
256 |
+
"add_numbers": lambda a, b: a + b,
|
257 |
+
"subtract_numbers": lambda a, b: a - b,
|
258 |
+
"multiply_numbers": lambda a, b: a * b,
|
259 |
+
"divide_numbers": lambda a, b: a / b if b != 0 else "Error: Division by zero",
|
260 |
+
"power_numbers": lambda a, b: a ** b,
|
261 |
+
"calculate_percentage": lambda v, p: (v * p) / 100,
|
262 |
+
}
|
263 |
+
|
264 |
+
# Prepare globals with common imports
|
265 |
+
code_globals = {
|
266 |
+
"__builtins__": __builtins__,
|
267 |
+
"math": __import__("math"),
|
268 |
+
"datetime": __import__("datetime"),
|
269 |
+
"json": __import__("json"),
|
270 |
+
"re": __import__("re"),
|
271 |
+
}
|
272 |
+
|
273 |
+
try:
|
274 |
+
code_globals["numpy"] = __import__("numpy")
|
275 |
+
code_globals["np"] = code_globals["numpy"]
|
276 |
+
except ImportError:
|
277 |
+
pass
|
278 |
+
|
279 |
+
try:
|
280 |
+
code_globals["pandas"] = __import__("pandas")
|
281 |
+
code_globals["pd"] = code_globals["pandas"]
|
282 |
+
except ImportError:
|
283 |
+
pass
|
284 |
+
|
285 |
+
self.code_executor = SimpleCodeExecutor(code_locals, code_globals)
|
286 |
+
print("✅ Code executor initialized")
|
287 |
+
|
288 |
+
def _initialize_agent(self):
|
289 |
+
"""Initialize the CodeAct Agent (deferred initialization)."""
|
290 |
+
if not self.llm:
|
291 |
+
print("Warning: No LLM available, using basic mode")
|
292 |
+
self.agent = None
|
293 |
+
self.context = None
|
294 |
+
return
|
295 |
+
|
296 |
+
# Store initialization parameters for deferred initialization
|
297 |
+
self._agent_params = {
|
298 |
+
'code_execute_fn': self.code_executor.execute,
|
299 |
+
'llm': self.llm,
|
300 |
+
'tools': self.tools
|
301 |
+
}
|
302 |
+
self.agent = None
|
303 |
+
self.context = None
|
304 |
+
print("✅ CodeAct Agent parameters prepared (deferred initialization)")
|
305 |
+
|
306 |
+
def _ensure_agent_initialized(self):
|
307 |
+
"""Ensure the CodeAct agent is initialized when needed."""
|
308 |
+
if self.agent is None and hasattr(self, '_agent_params'):
|
309 |
+
try:
|
310 |
+
# Reset any existing context to avoid conflicts
|
311 |
+
if hasattr(self, 'context') and self.context:
|
312 |
+
try:
|
313 |
+
# Clean up existing context if possible
|
314 |
+
self.context = None
|
315 |
+
except:
|
316 |
+
pass
|
317 |
+
|
318 |
+
# Create the CodeAct Agent without assuming event loop state
|
319 |
+
self.agent = CodeActAgent(**self._agent_params)
|
320 |
+
print("✅ CodeAct Agent initialized (deferred)")
|
321 |
+
|
322 |
+
except Exception as e:
|
323 |
+
print(f"Error in deferred agent initialization: {e}")
|
324 |
+
print("Continuing with fallback mode...")
|
325 |
+
return False
|
326 |
+
return self.agent is not None
|
327 |
+
|
328 |
+
async def __call__(self, question: str) -> str:
|
329 |
+
"""
|
330 |
+
Main method that processes a question and returns an answer.
|
331 |
+
"""
|
332 |
+
print(f"Agent received question (first 100 chars): {question[:100]}...")
|
333 |
+
|
334 |
+
# Ensure agent is initialized (for deferred initialization)
|
335 |
+
self._ensure_agent_initialized()
|
336 |
+
|
337 |
+
# Enhanced prompt with specific formatting requirements
|
338 |
+
enhanced_prompt = f"""
|
339 |
+
You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
|
340 |
+
|
341 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
342 |
+
|
343 |
+
Available tools and capabilities:
|
344 |
+
- Mathematical calculations (addition, subtraction, multiplication, division, powers, percentages)
|
345 |
+
- Web search using DuckDuckGo
|
346 |
+
- Wikipedia search for factual information
|
347 |
+
- Web requests for API calls
|
348 |
+
- Code execution for complex calculations and data processing
|
349 |
+
- Python libraries: math, datetime, json, re, numpy (if available), pandas (if available)
|
350 |
+
|
351 |
+
Question: {question}
|
352 |
+
|
353 |
+
Think step by step, use the available tools when necessary, and provide your final answer in the specified format.
|
354 |
+
"""
|
355 |
+
|
356 |
+
if self.agent:
|
357 |
+
try:
|
358 |
+
# Use the CodeAct agent for advanced reasoning
|
359 |
+
response = await self._async_agent_run(enhanced_prompt)
|
360 |
+
return response
|
361 |
+
except Exception as e:
|
362 |
+
print(f"Error with CodeAct agent: {e}")
|
363 |
+
return f"FINAL ANSWER: Error processing question - {str(e)}"
|
364 |
+
else:
|
365 |
+
return "FINAL ANSWER: Agent not properly initialized"
|
366 |
+
|
367 |
+
|
368 |
+
async def _async_agent_run(self, prompt: str) -> str:
|
369 |
+
"""Run the agent asynchronously."""
|
370 |
+
try:
|
371 |
+
# Create a fresh context for this run to avoid loop conflicts
|
372 |
+
context = Context(self.agent)
|
373 |
+
handler = self.agent.run(prompt, ctx=context)
|
374 |
+
|
375 |
+
async for event in handler.stream_events():
|
376 |
+
if isinstance(event, ToolCallResult):
|
377 |
+
print(
|
378 |
+
f"\n-----------\nCode execution result:\n{event.tool_output}"
|
379 |
+
)
|
380 |
+
elif isinstance(event, ToolCall):
|
381 |
+
print(f"\n-----------\nParsed code:\n{event.tool_kwargs['code']}")
|
382 |
+
elif isinstance(event, AgentStream):
|
383 |
+
print(f"{event.delta}", end="", flush=True)
|
384 |
+
|
385 |
+
return await handler
|
386 |
+
except Exception as e:
|
387 |
+
print(f"Async agent error: {e}")
|
388 |
+
return f"FINAL ANSWER: Error in agent processing - {str(e)}"
|
389 |
+
|
390 |
+
|
app.py
CHANGED
@@ -3,23 +3,25 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
-
|
12 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
-
class BasicAgent:
|
14 |
-
def __init__(self):
|
15 |
-
print("BasicAgent initialized.")
|
16 |
-
def __call__(self, question: str) -> str:
|
17 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
-
fixed_answer = "This is a default answer."
|
19 |
-
print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
-
return fixed_answer
|
21 |
-
|
22 |
-
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
24 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
25 |
and displays the results.
|
@@ -73,6 +75,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
73 |
results_log = []
|
74 |
answers_payload = []
|
75 |
print(f"Running agent on {len(questions_data)} questions...")
|
|
|
76 |
for item in questions_data:
|
77 |
task_id = item.get("task_id")
|
78 |
question_text = item.get("question")
|
@@ -80,7 +83,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
80 |
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
continue
|
82 |
try:
|
83 |
-
submitted_answer = agent(question_text)
|
84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
except Exception as e:
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
+
from typing import Optional
|
7 |
+
|
8 |
+
# Load environment variables from .env file
|
9 |
+
try:
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
load_dotenv()
|
12 |
+
print("✅ .env file loaded successfully")
|
13 |
+
except ImportError:
|
14 |
+
print("⚠️ python-dotenv not available, .env file not loaded")
|
15 |
+
except Exception as e:
|
16 |
+
print(f"⚠️ Error loading .env file: {e}")
|
17 |
+
|
18 |
+
from agent import BasicAgent
|
19 |
|
20 |
# (Keep Constants as is)
|
21 |
# --- Constants ---
|
22 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
23 |
|
24 |
+
async def run_and_submit_all(profile: Optional[gr.OAuthProfile]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
"""
|
26 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
27 |
and displays the results.
|
|
|
75 |
results_log = []
|
76 |
answers_payload = []
|
77 |
print(f"Running agent on {len(questions_data)} questions...")
|
78 |
+
questions_data = questions_data[:1]
|
79 |
for item in questions_data:
|
80 |
task_id = item.get("task_id")
|
81 |
question_text = item.get("question")
|
|
|
83 |
print(f"Skipping item with missing task_id or question: {item}")
|
84 |
continue
|
85 |
try:
|
86 |
+
submitted_answer = await agent(question_text)
|
87 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
88 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
89 |
except Exception as e:
|
requirements.txt
CHANGED
@@ -1,2 +1,19 @@
|
|
1 |
-
gradio
|
2 |
-
requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio[oauth]
|
2 |
+
requests
|
3 |
+
pandas
|
4 |
+
python-dotenv
|
5 |
+
# LlamaIndex core dependencies
|
6 |
+
llama-index-core
|
7 |
+
llama-index-llms-huggingface
|
8 |
+
llama-index-workflows
|
9 |
+
|
10 |
+
# LlamaIndex tools
|
11 |
+
llama-index-tools-duckduckgo
|
12 |
+
llama-index-tools-wikipedia
|
13 |
+
llama-index-tools-requests
|
14 |
+
|
15 |
+
# Additional dependencies for ML and data processing
|
16 |
+
torch
|
17 |
+
transformers
|
18 |
+
numpy
|
19 |
+
asyncio
|