""" Intelligent AI Agent using LlamaIndex with websearch capabilities This module contains the agent class with advanced tools and reasoning. """ import os import asyncio import io import contextlib import ast import traceback from typing import Any, Dict, Tuple, List # Load environment variables from .env file try: from dotenv import load_dotenv load_dotenv() print("✅ .env file loaded successfully") except ImportError: print("⚠️ python-dotenv not available, .env file not loaded") except Exception as e: print(f"⚠️ Error loading .env file: {e}") # LlamaIndex imports try: from llama_index.core.agent.workflow import ( ToolCall, ToolCallResult, FunctionAgent, AgentStream, ) #from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.core.tools import FunctionTool from llama_index.tools.wikipedia import WikipediaToolSpec from llama_index.tools.tavily_research.base import TavilyToolSpec #from llama_index.llms.ollama import Ollama from llama_index.llms.bedrock_converse import BedrockConverse #from llama_index.llms.openai import OpenAI LLAMA_INDEX_AVAILABLE = True except ImportError as e: print(f"LlamaIndex imports not available: {e}") LLAMA_INDEX_AVAILABLE = False #MODEL = "microsoft/Phi-3.5-mini-instruct" class BasicAgent: """ Advanced AI Agent using LlamaIndex with CodeAct capabilities and multiple tools. """ def __init__(self): """Initialize the agent with LLM, tools, and code executor.""" print("Initializing Advanced AI Agent with LlamaIndex...") # Get Hugging Face token self.hf_token = os.getenv("HUGGINGFACE_TOKEN") if not self.hf_token: print("Warning: HUGGINGFACE_TOKEN not found. Using default model.") # Initialize LLM self._initialize_llm() # Initialize tools self._initialize_tools() # Initialize code executor #self._initialize_code_executor() # Initialize CodeAct Agent self._initialize_agent() print("Advanced AI Agent initialized successfully.") def _initialize_llm(self): """Initialize the Hugging Face LLM.""" if not LLAMA_INDEX_AVAILABLE: print("LlamaIndex not available, using basic mode") self.llm = None return try: #self.llm = OpenAI(model="gpt-4o", api_key=os.getenv("OPENAI_API_KEY")) #self.llm = Ollama(model="llama3.1:latest", base_url="http://localhost:11434") self.llm = BedrockConverse( model="amazon.nova-pro-v1:0", temperature=0.5, aws_access_key_id=os.getenv("AWS_ACCESS_KEY_ID"), aws_secret_access_key=os.getenv("AWS_SECRET_ACCESS_KEY"), region_name=os.getenv("AWS_REGION"), ) print("✅ LLM initialized successfully") except Exception as e: print(f"Error initializing LLM: {e}") # Fallback to a basic setup self.llm = None def _initialize_tools(self): """Initialize all available tools.""" self.tools = [] # Store basic math functions for fallback mode self.math_functions = { 'add': lambda a, b: a + b, 'subtract': lambda a, b: a - b, 'multiply': lambda a, b: a * b, 'divide': lambda a, b: a / b if b != 0 else "Error: Division by zero", 'power': lambda a, b: a ** b, 'percentage': lambda v, p: (v * p) / 100, } if not LLAMA_INDEX_AVAILABLE: print("Tools initialization skipped - LlamaIndex not available") return # Mathematical tools def add_numbers(a: float, b: float) -> float: """Add two numbers together.""" return a + b def subtract_numbers(a: float, b: float) -> float: """Subtract second number from first number.""" return a - b def multiply_numbers(a: float, b: float) -> float: """Multiply two numbers.""" return a * b def divide_numbers(a: float, b: float) -> float: """Divide first number by second number.""" if b == 0: return "Error: Division by zero" return a / b def power_numbers(a: float, b: float) -> float: """Raise first number to the power of second number.""" return a ** b def calculate_percentage(value: float, percentage: float) -> float: """Calculate percentage of a value.""" return (value * percentage) / 100 def get_modulus(a: float, b: float) -> float: """Get the modulus of two numbers.""" return a % b # Create function tools try: math_tools = [ FunctionTool.from_defaults(fn=add_numbers, name="add_numbers", description="Add two numbers together"), FunctionTool.from_defaults(fn=subtract_numbers, name="subtract_numbers", description="Subtract second number from first number"), FunctionTool.from_defaults(fn=multiply_numbers, name="multiply_numbers", description="Multiply two numbers"), FunctionTool.from_defaults(fn=divide_numbers, name="divide_numbers", description="Divide first number by second number"), FunctionTool.from_defaults(fn=power_numbers, name="power_numbers", description="Raise first number to the power of second number"), FunctionTool.from_defaults(fn=calculate_percentage, name="calculate_percentage", description="Calculate percentage of a value"), FunctionTool.from_defaults(fn=get_modulus, name="get_modulus", description="Get the modulus of two numbers"), ] self.tools.extend(math_tools) print("✅ Math tools initialized") except Exception as e: print(f"Warning: Could not initialize math tools: {e}") # Initialize search tools try: # web search search_spec = TavilyToolSpec( api_key=os.getenv("TAVILY_API_KEY"), ) search_tool = search_spec.to_tool_list() self.tools.extend(search_tool) print("✅ DuckDuckGo search tool initialized") except Exception as e: print(f"Warning: Could not initialize DuckDuckGo tool: {e}") try: # Wikipedia search wiki_spec = WikipediaToolSpec() wiki_tools = FunctionTool.from_defaults(wiki_spec.wikipedia_search, name="wikipedia_search", description="Search Wikipedia for information") self.tools.extend(wiki_tools) print("✅ Wikipedia tool initialized") except Exception as e: print(f"Warning: Could not initialize Wikipedia tool: {e}") """ try: # Web requests tool requests_spec = RequestsToolSpec() requests_tools = requests_spec.to_tool_list() self.tools.extend(requests_tools) print("✅ Web requests tool initialized") except Exception as e: print(f"Warning: Could not initialize requests tool: {e}") """ print(f"✅ Total {len(self.tools)} tools initialized") def _initialize_agent(self): """Initialize the CodeAct Agent (deferred initialization).""" if not self.llm: print("Warning: No LLM available, using basic mode") self.agent = None self.context = None return # Store initialization parameters for deferred initialization self._agent_params = { #'code_execute_fn': self.code_executor.execute, 'llm': self.llm, 'tools': self.tools } self.agent = None self.context = None print("✅ CodeAct Agent parameters prepared (deferred initialization)") def _ensure_agent_initialized(self): """Ensure the CodeAct agent is initialized when needed.""" if self.agent is None and hasattr(self, '_agent_params'): try: # Reset any existing context to avoid conflicts if hasattr(self, 'context') and self.context: try: # Clean up existing context if possible self.context = None except: pass # Create the CodeAct Agent without assuming event loop state #self.agent = CodeActAgent(**self._agent_params) # Enhanced prompt with specific formatting requirements for medium models enhanced_prompt = f""" You are an intelligent AI assistant equipped with powerful tools to help solve problems. You must think step-by-step and use the available tools when needed. ## AVAILABLE TOOLS: You have access to the following tools - use them strategically: ### Mathematical Tools: - add_numbers(a, b): Add two numbers together - subtract_numbers(a, b): Subtract second number from first number - multiply_numbers(a, b): Multiply two numbers - divide_numbers(a, b): Divide first number by second number - power_numbers(a, b): Raise first number to the power of second number - calculate_percentage(value, percentage): Calculate percentage of a value - get_modulus(a, b): Get the modulus of two numbers ### Research Tools: - tavily_search(query): Search the web for current information - wikipedia_search(query): Search Wikipedia for factual information ## INSTRUCTIONS: 1. **Read the question carefully** and identify what type of answer is needed 2. **Think step-by-step** - break down complex problems into smaller parts 3. **Use tools when necessary** - don't try to guess calculations or current information 4. **For mathematical problems**: Use the math tools for accuracy 5. **For factual questions**: Use search tools to get current/accurate information 6. **Show your reasoning** - explain your thought process before the final answer ## ANSWER FORMAT: Always end your response with exactly this format: FINAL ANSWER: [YOUR ANSWER] ## FORMATTING RULES FOR FINAL ANSWER: - **Numbers**: Write plain numbers without commas, units, or symbols (unless specifically asked) - **Text**: Use simple words, no articles (a, an, the), no abbreviations - **Lists**: Comma-separated, following the above rules for each element - **Calculations**: Show the result as a plain number ## EXAMPLES: Question: "What is 25% of 200?" Reasoning: I need to calculate 25% of 200 using the percentage tool. [Use calculate_percentage(200, 25)] FINAL ANSWER: 50 Question: "What is the capital of France?" Reasoning: This is a factual question about geography. [Use wikipedia_search("France capital")] FINAL ANSWER: Paris Remember: Think carefully, use tools when helpful, and always provide your final answer in the specified format. """ self.agent = FunctionAgent( tools=self.tools, llm=self.llm, system_prompt=enhanced_prompt, ) print("✅ CodeAct Agent initialized (deferred)") except Exception as e: print(f"Error in deferred agent initialization: {e}") print("Continuing with fallback mode...") return False return self.agent is not None async def __call__(self, question: str) -> str: """ Main method that processes a question and returns an answer. """ print(f"Agent received question (first 100 chars): {question[:100]}...") # Ensure agent is initialized (for deferred initialization) self._ensure_agent_initialized() if self.agent: try: # Use the CodeAct agent for advanced reasoning response = await self._async_agent_run(question) return response except Exception as e: print(f"Error with agent: {e}") return f"FINAL ANSWER: Error processing question - {str(e)}" else: return "FINAL ANSWER: Agent not properly initialized" async def _async_agent_run(self, question: str) -> str: """Run the agent asynchronously.""" try: # Create a fresh context for this run to avoid loop conflicts #context = Context(self.agent) print("Agent running...") print(self.agent) handler = self.agent.run(question) #return str(handler) iterationsNumber = 0 async for event in handler.stream_events(): iterationsNumber += 1 # if isinstance(event, ToolCallResult): # print( # f"\n-----------\nCode execution result:\n{event.tool_output}" # ) if isinstance(event, ToolCall): print(f"\n-----------\nevent:\n{event}") elif isinstance(event, AgentStream): print(f"{event.delta}", end="", flush=True) """ if iterationsNumber > 5: print("Too many iterations, stopping...") break """ response = await handler print(f'response.response: {response.response.content}') return response.response.content.split("FINAL ANSWER: ")[1] except Exception as e: print(f"Async agent error: {e}") return f"FINAL ANSWER: Error in agent processing - {str(e)}"