File size: 6,253 Bytes
ee0d33f
 
1ee9ade
038645c
ee0d33f
1ee9ade
 
 
 
 
 
 
4a20ca6
f7ea072
 
038645c
f7ea072
 
bb850d5
 
 
1ee9ade
 
 
 
ee0d33f
1ee9ade
 
ee0d33f
1ee9ade
 
 
 
 
 
 
 
f7ea072
038645c
f7ea072
 
 
 
038645c
bb850d5
 
f7ea072
bb850d5
1ee9ade
 
 
 
 
bb850d5
f7ea072
 
 
 
 
1ee9ade
 
344c4fa
f7ea072
1ee9ade
 
f7ea072
1ee9ade
 
 
 
f7ea072
1ee9ade
 
f7ea072
1ee9ade
 
 
 
 
f7ea072
 
 
 
 
3a0b0c9
 
f7ea072
 
36ef4da
f7ea072
36ef4da
 
bb850d5
f7ea072
4a20ca6
b4a8eca
bb850d5
f7ea072
 
 
 
 
 
 
 
 
 
8c1021f
f7ea072
 
 
 
4a20ca6
b4a8eca
f7ea072
 
1ee9ade
3a0b0c9
 
 
 
 
 
 
 
6518c39
 
 
f7ea072
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
import whisper
from pytube import YouTube
from transformers import pipeline, T5Tokenizer, T5ForConditionalGeneration

class GradioInference():
    def __init__(self):
        self.sizes = list(whisper._MODELS.keys())
        self.langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values()))
        self.current_size = "base"
        self.loaded_model = whisper.load_model(self.current_size)
        self.yt = None
        self.summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
        
        # Initialize VoiceLabT5 model and tokenizer
        self.keyword_model = T5ForConditionalGeneration.from_pretrained("Voicelab/vlt5-base-keywords")
        self.keyword_tokenizer = T5Tokenizer.from_pretrained("Voicelab/vlt5-base-keywords")

        # Sentiment Classifier
        self.classifier = pipeline("text-classification")

    def __call__(self, link, lang, size):
        if self.yt is None:
            self.yt = YouTube(link)
        path = self.yt.streams.filter(only_audio=True)[0].download(filename="tmp.mp4")

        if lang == "none":
            lang = None

        if size != self.current_size:
            self.loaded_model = whisper.load_model(size)
            self.current_size = size
        results = self.loaded_model.transcribe(path, language=lang)

        # Perform summarization on the transcription
        transcription_summary = self.summarizer(results["text"], max_length=130, min_length=30, do_sample=False)

        # Extract keywords using VoiceLabT5
        task_prefix = "Keywords: "
        input_sequence = task_prefix + results["text"]
        input_ids = self.keyword_tokenizer(input_sequence, return_tensors="pt", truncation=False).input_ids
        output = self.keyword_model.generate(input_ids, no_repeat_ngram_size=3, num_beams=4)
        predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
        keywords = [x.strip() for x in predicted.split(',') if x.strip()]

        label = self.classifier(results["text"])[0]["label"]
        
        return results["text"], transcription_summary[0]["summary_text"], keywords, label

    def populate_metadata(self, link):
        self.yt = YouTube(link)
        return self.yt.thumbnail_url, self.yt.title


def transcribe_audio(audio_file):
    model = whisper.load_model("base")
    result = model.transcribe(audio_file)
    return result["text"]


gio = GradioInference()
title = "Youtube Insights"
description = "Your AI-powered video analytics tool"

block = gr.Blocks()
with block as demo:
    gr.HTML(
        """
        <div style="text-align: center; max-width: 500px; margin: 0 auto;">
          <div>
            <h1>Youtube <span style="color: red;">Insights</span> 📹</h1>
          </div>
          <p style="margin-bottom: 10px; font-size: 94%">
            Your AI-powered video analytics tool
          </p>
        </div>
        """
    )
    with gr.Group():
        with gr.Tab("From YouTube"):
            with gr.Box():
                with gr.Row().style(equal_height=True):
                    size = gr.Dropdown(label="Model Size", choices=gio.sizes, value='base')
                    lang = gr.Dropdown(label="Language (Optional)", choices=gio.langs, value="none")
                link = gr.Textbox(label="YouTube Link")
                title = gr.Label(label="Video Title")
                with gr.Row().style(equal_height=True):
                    img = gr.Image(label="Thumbnail")
                    text = gr.Textbox(label="Transcription", placeholder="Transcription Output", lines=10).style(show_copy_button=True, container=True)
                with gr.Row().style(equal_height=True):
                    summary = gr.Textbox(label="Summary", placeholder="Summary Output", lines=5).style(show_copy_button=True, container=True)
                    keywords = gr.Textbox(label="Keywords", placeholder="Keywords Output", lines=5).style(show_copy_button=True, container=True)
                    label = gr.Label(label="Sentiment Analysis")
                with gr.Row().style(equal_height=True):
                    clear = gr.ClearButton([link, title, img, text, summary, keywords, label])
                    btn = gr.Button("Get video insights", variant='primary')  # Updated button label
                btn.click(gio, inputs=[link, lang, size], outputs=[text, summary, keywords, label])
                link.change(gio.populate_metadata, inputs=[link], outputs=[img, title])

        with gr.Tab("From Audio file"):
            with gr.Box():
                with gr.Row().style(equal_height=True):
                    size = gr.Dropdown(label="Model Size", choices=gio.sizes, value='base')
                    lang = gr.Dropdown(label="Language (Optional)", choices=gio.langs, value="none")
                audio_file = gr.Audio(type="filepath")
                with gr.Row().style(equal_height=True):
                    # img = gr.Image(label="Thumbnail")
                    text = gr.Textbox(label="Transcription", placeholder="Transcription Output", lines=10).style(show_copy_button=True, container=False)
                # with gr.Row().style(equal_height=True):
                #     summary = gr.Textbox(label="Summary", placeholder="Summary Output", lines=5)
                #     keywords = gr.Textbox(label="Keywords", placeholder="Keywords Output", lines=5)
                with gr.Row().style(equal_height=True):
                    clear = gr.ClearButton([text])
                    btn = gr.Button("Get video insights", variant='primary')  # Updated button label
                btn.click(transcribe_audio, inputs=[audio_file], outputs=[text])
                # link.change(gio.populate_metadata, inputs=[link], outputs=[img, title])

with block:
    gr.Markdown("About the app:")
    
    with gr.Accordion("What is YouTube Insights?"):
            gr.Markdown("YouTube Insights is a tool developed with academic purposes only, that creates summaries, keywords and sentiments analysis based on YouTube videos or user audio files.")
    
    with gr.Accordion("How does it work?"):
            gr.Markdown("Works by using OpenAI's Whisper, DistilBART for summarization and VoiceLabT5 for Keyword Extraction.")



demo.launch()