Spaces:
Runtime error
Runtime error
Commit
·
6100c94
1
Parent(s):
65b4025
Update app.py
Browse files
app.py
CHANGED
@@ -36,7 +36,7 @@ class GradioInference:
|
|
36 |
)
|
37 |
|
38 |
# Sentiment Classifier
|
39 |
-
self.classifier = pipeline("text-classification")
|
40 |
|
41 |
|
42 |
self.tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/mT5_multilingual_XLSum")
|
@@ -116,6 +116,7 @@ class GradioInference:
|
|
116 |
)
|
117 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
118 |
keywords = [x.strip() for x in predicted.split(",") if x.strip()]
|
|
|
119 |
|
120 |
progress(0.80, desc="Extracting Sentiment")
|
121 |
# Sentiment label
|
@@ -132,7 +133,7 @@ class GradioInference:
|
|
132 |
return (
|
133 |
results["text"],
|
134 |
transcription_summary[0]["summary_text"],
|
135 |
-
|
136 |
label,
|
137 |
wordcloud_image,
|
138 |
)
|
@@ -140,7 +141,7 @@ class GradioInference:
|
|
140 |
return (
|
141 |
results["text"],
|
142 |
summary,
|
143 |
-
|
144 |
label,
|
145 |
wordcloud_image,
|
146 |
)
|
@@ -219,6 +220,7 @@ class GradioInference:
|
|
219 |
)
|
220 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
221 |
keywords = [x.strip() for x in predicted.split(",") if x.strip()]
|
|
|
222 |
|
223 |
progress(0.80, desc="Extracting Sentiment")
|
224 |
# Sentiment label
|
@@ -235,7 +237,7 @@ class GradioInference:
|
|
235 |
return (
|
236 |
results["text"],
|
237 |
transcription_summary[0]["summary_text"],
|
238 |
-
|
239 |
label,
|
240 |
wordcloud_image,
|
241 |
)
|
@@ -243,7 +245,7 @@ class GradioInference:
|
|
243 |
return (
|
244 |
results["text"],
|
245 |
summary,
|
246 |
-
|
247 |
label,
|
248 |
wordcloud_image,
|
249 |
)
|
|
|
36 |
)
|
37 |
|
38 |
# Sentiment Classifier
|
39 |
+
self.classifier = pipeline("text-classification", model="lxyuan/distilbert-base-multilingual-cased-sentiments-student", return_all_scores=False)
|
40 |
|
41 |
|
42 |
self.tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/mT5_multilingual_XLSum")
|
|
|
116 |
)
|
117 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
118 |
keywords = [x.strip() for x in predicted.split(",") if x.strip()]
|
119 |
+
formatted_keywords = "\n".join([f"• {keyword}" for keyword in keywords])
|
120 |
|
121 |
progress(0.80, desc="Extracting Sentiment")
|
122 |
# Sentiment label
|
|
|
133 |
return (
|
134 |
results["text"],
|
135 |
transcription_summary[0]["summary_text"],
|
136 |
+
formatted_keywords,
|
137 |
label,
|
138 |
wordcloud_image,
|
139 |
)
|
|
|
141 |
return (
|
142 |
results["text"],
|
143 |
summary,
|
144 |
+
formatted_keywords,
|
145 |
label,
|
146 |
wordcloud_image,
|
147 |
)
|
|
|
220 |
)
|
221 |
predicted = self.keyword_tokenizer.decode(output[0], skip_special_tokens=True)
|
222 |
keywords = [x.strip() for x in predicted.split(",") if x.strip()]
|
223 |
+
formatted_keywords = "\n".join([f"• {keyword}" for keyword in keywords])
|
224 |
|
225 |
progress(0.80, desc="Extracting Sentiment")
|
226 |
# Sentiment label
|
|
|
237 |
return (
|
238 |
results["text"],
|
239 |
transcription_summary[0]["summary_text"],
|
240 |
+
formatted_keywords,
|
241 |
label,
|
242 |
wordcloud_image,
|
243 |
)
|
|
|
245 |
return (
|
246 |
results["text"],
|
247 |
summary,
|
248 |
+
formatted_keywords,
|
249 |
label,
|
250 |
wordcloud_image,
|
251 |
)
|