File size: 912 Bytes
0db68b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import streamlit as st
import numpy as np
import joblib
# ✅ Load Model & Scaler from Specific Path
model_path = ("C:\\Users\\KAUSHIK\\OneDrive\\Documents\\lr.pkl")
scaler_path = ("C:\\Users\\KAUSHIK\\OneDrive\\Documents\\scaler.pkl")
lr = joblib.load(model_path)
scaler = joblib.load(scaler_path)
st.title("Diabetes Disease Progression Predictor")
st.write("Enter the following patient details:")
# Input Features
features = ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']
inputs = []
for feature in features:
val = st.number_input(f"{feature}", value=0.0, step=0.01, format="%.2f")
inputs.append(val)
# Predict Button
if st.button("Predict Disease Progression"):
data = np.array([inputs])
scaled_data = scaler.transform(data)
prediction = lr.predict(scaled_data)
st.success(f"Predicted Disease Progression Score: {prediction[0]:.2f}")
|