import streamlit as st import numpy as np import joblib # ✅ Load Model & Scaler from Specific Path model_path = ("C:\\Users\\KAUSHIK\\OneDrive\\Documents\\lr.pkl") scaler_path = ("C:\\Users\\KAUSHIK\\OneDrive\\Documents\\scaler.pkl") lr = joblib.load(model_path) scaler = joblib.load(scaler_path) st.title("Diabetes Disease Progression Predictor") st.write("Enter the following patient details:") # Input Features features = ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6'] inputs = [] for feature in features: val = st.number_input(f"{feature}", value=0.0, step=0.01, format="%.2f") inputs.append(val) # Predict Button if st.button("Predict Disease Progression"): data = np.array([inputs]) scaled_data = scaler.transform(data) prediction = lr.predict(scaled_data) st.success(f"Predicted Disease Progression Score: {prediction[0]:.2f}")