File size: 1,523 Bytes
0b0f289
 
 
3ecf051
0b0f289
 
 
62a4b51
3ecf051
 
62a4b51
3ecf051
62a4b51
3ecf051
 
 
62a4b51
3ecf051
62a4b51
3ecf051
 
62a4b51
 
 
 
3ecf051
62a4b51
 
 
3ecf051
 
62a4b51
 
3ecf051
62a4b51
 
3ecf051
 
0b0f289
3ecf051
 
0b0f289
3ecf051
 
 
 
 
 
0b0f289
3ecf051
 
 
 
0b0f289
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from transformers import BertTokenizer, BertForMaskedLM, Trainer, TrainingArguments

app = FastAPI()

# Initialize the tokenizer and model
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertForMaskedLM.from_pretrained("bert-base-uncased")

# Prepare the training data
with open("cyberpunk_lore.txt", "r") as f:
    train_data = f.read()
train_data = train_data.split("\n")
train_data = [tokenizer.encode(text, return_tensors="pt") for text in train_data]

# Define the training arguments
training_args = TrainingArguments(
    output_dir="./results",
    per_device_train_batch_size=16,
    save_steps=10_000,
    save_total_limit=2,
)

# Create the trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_data,
    eval_dataset=train_data,
)

# Start the training
trainer.train()

# Save the fine-tuned model
trainer.save_model('./results')

# Load the fine-tuned model
model = trainer.get_model()

# Create the inference endpoint
@app.post("/infer")
def infer(input: str):
    input_ids = tokenizer.encode(input, return_tensors="pt")
    output = model(input_ids)[0]
    return {"output": output}

@app.get("/")
def index() -> FileResponse:
    return FileResponse(path="/app/static/index.html", media_type="text/html")
    
@app.get("/")
def index() -> FileResponse:
    return FileResponse(path="/app/static/index.html", media_type="text/html")