Spaces:
Sleeping
Sleeping
File size: 5,458 Bytes
5ddcb1d 8a11c8b d5d1f19 963a084 d5d1f19 733a440 d5d1f19 733a440 5985252 d5d1f19 733a440 d5d1f19 5985252 d5d1f19 5985252 733a440 d5d1f19 5985252 d5d1f19 5ddcb1d 733a440 d5d1f19 5985252 d5d1f19 733a440 8a11c8b d5d1f19 733a440 8a11c8b 5ddcb1d d5d1f19 5985252 733a440 d5d1f19 733a440 5ddcb1d d5d1f19 733a440 d5d1f19 733a440 d5d1f19 733a440 d5d1f19 733a440 d5d1f19 733a440 d5d1f19 733a440 d5d1f19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import gradio as gr
import pandas as pd
import json
import io
import os
import random
from collections import defaultdict
from sentence_transformers import SentenceTransformer
import hdbscan
from sklearn.metrics import silhouette_score, davies_bouldin_score
import numpy as np
import umap
from sklearn.preprocessing import MinMaxScaler
# 加载模型,放到全局避免重复加载
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
def color_for_label(label):
try:
label_int = int(label)
except:
label_int = -1
if label_int < 0:
return "rgb(150,150,150)" # 噪声点
random.seed(label_int + 1000)
return f"rgb({random.randint(50,200)}, {random.randint(50,200)}, {random.randint(50,200)})"
def cluster_sentences(sentences):
embeddings = model.encode(sentences)
clusterer = hdbscan.HDBSCAN(min_cluster_size=2, metric='euclidean')
labels = clusterer.fit_predict(embeddings)
valid_idxs = labels != -1
if np.sum(valid_idxs) > 1:
silhouette = silhouette_score(embeddings[valid_idxs], labels[valid_idxs])
db = davies_bouldin_score(embeddings[valid_idxs], labels[valid_idxs])
else:
silhouette, db = -1, -1
return labels, embeddings, {"silhouette": silhouette, "db": db}
def generate_force_graph(sentences, labels):
nodes = []
links = []
label_map = defaultdict(list)
for i, (s, l) in enumerate(zip(sentences, labels)):
color = color_for_label(l)
nodes.append({"name": s, "symbolSize": 10, "category": int(l) if l >=0 else 0, "itemStyle": {"color": color}})
label_map[l].append(i)
for group in label_map.values():
max_edges_per_node = 10
for i in group:
connected = 0
for j in group:
if i < j:
links.append({"source": sentences[i], "target": sentences[j]})
connected += 1
if connected >= max_edges_per_node:
break
return {"type": "force", "nodes": nodes, "links": links}
def generate_bubble_chart(sentences, labels):
counts = defaultdict(int)
for l in labels:
counts[l] += 1
data = [{"name": f"簇{l}" if l >=0 else "噪声", "value": v, "itemStyle": {"color": color_for_label(l)}} for l, v in counts.items()]
return {"type": "bubble", "series": [{"type": "scatter", "data": data}]}
def generate_umap_plot(embeddings, labels):
reducer = umap.UMAP(n_components=2, random_state=42)
umap_emb = reducer.fit_transform(embeddings)
scaled = MinMaxScaler().fit_transform(umap_emb)
data = [{"x": float(x), "y": float(y), "label": int(l), "itemStyle": {"color": color_for_label(l)}} for (x, y), l in zip(scaled, labels)]
return {"type": "scatter", "series": [{"data": data}]}
def process(text_input, file_obj):
# 先收集所有句子
sentences = []
# 读取txt文件内容
if file_obj is not None:
try:
# file_obj 是 tempfile.NamedTemporaryFile,直接打开它的 file_obj.name
with open(file_obj.name, "r", encoding="utf-8") as f:
content = f.read()
lines = content.strip().splitlines()
sentences.extend([line.strip() for line in lines if line.strip()])
except Exception as e:
return f"❌ 文件读取失败: {str(e)}", None, None, None, None, None, None
# 处理文本框输入
if text_input:
lines = text_input.strip().splitlines()
sentences.extend([line.strip() for line in lines if line.strip()])
# 去重
sentences = list(dict.fromkeys(sentences))
if len(sentences) < 2:
return "⚠️ 请输入至少两个有效句子进行聚类", None, None, None, None, None, None
# 聚类
labels, embeddings, scores = cluster_sentences(sentences)
# 生成数据
df = pd.DataFrame({"句子": sentences, "簇ID": labels})
force_json = generate_force_graph(sentences, labels)
bubble_json = generate_bubble_chart(sentences, labels)
umap_json = generate_umap_plot(embeddings, labels)
csv_data = df.to_csv(index=False, encoding="utf-8-sig")
return (
f"✅ Silhouette: {scores['silhouette']:.4f}, DB: {scores['db']:.4f}",
df,
json.dumps(force_json, ensure_ascii=False, indent=2),
json.dumps(bubble_json, ensure_ascii=False, indent=2),
json.dumps(umap_json, ensure_ascii=False, indent=2),
csv_data
)
def csv_download(csv_str):
return io.BytesIO(csv_str.encode("utf-8-sig"))
with gr.Blocks() as demo:
gr.Markdown("# 中文句子语义聚类 Demo")
with gr.Row():
text_input = gr.Textbox(label="输入多句子(每行一句)", lines=8)
file_input = gr.File(label="上传文本文件 (.txt)", file_types=['.txt'])
btn = gr.Button("开始聚类")
output_score = gr.Textbox(label="聚类指标", interactive=False)
output_table = gr.Dataframe(headers=["句子", "簇ID"], interactive=False)
output_force = gr.JSON(label="力导图数据")
output_bubble = gr.JSON(label="气泡图数据")
output_umap = gr.JSON(label="UMAP二维数据")
output_csv = gr.File(label="导出CSV")
btn.click(
fn=process,
inputs=[text_input, file_input],
outputs=[output_score, output_table, output_force, output_bubble, output_umap, output_csv]
)
output_csv.download = csv_download
demo.launch()
|