Spaces:
Sleeping
Sleeping
Upload clustering_utils.py
Browse files- clustering_utils.py +13 -8
clustering_utils.py
CHANGED
@@ -1,16 +1,21 @@
|
|
1 |
from sentence_transformers import SentenceTransformer
|
2 |
import hdbscan
|
3 |
from sklearn.metrics import silhouette_score, davies_bouldin_score
|
|
|
4 |
|
5 |
model = SentenceTransformer("shibing624/text2vec-bge-large-chinese")
|
6 |
|
7 |
def cluster_sentences(sentences):
|
8 |
-
embeddings = model.encode(sentences
|
9 |
-
clusterer = hdbscan.HDBSCAN(min_cluster_size=
|
10 |
labels = clusterer.fit_predict(embeddings)
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
1 |
from sentence_transformers import SentenceTransformer
|
2 |
import hdbscan
|
3 |
from sklearn.metrics import silhouette_score, davies_bouldin_score
|
4 |
+
import numpy as np
|
5 |
|
6 |
model = SentenceTransformer("shibing624/text2vec-bge-large-chinese")
|
7 |
|
8 |
def cluster_sentences(sentences):
|
9 |
+
embeddings = model.encode(sentences)
|
10 |
+
clusterer = hdbscan.HDBSCAN(min_cluster_size=2, metric='euclidean')
|
11 |
labels = clusterer.fit_predict(embeddings)
|
12 |
+
|
13 |
+
valid_idxs = labels != -1
|
14 |
+
if np.sum(valid_idxs) > 1:
|
15 |
+
silhouette = silhouette_score(embeddings[valid_idxs], labels[valid_idxs])
|
16 |
+
db = davies_bouldin_score(embeddings[valid_idxs], labels[valid_idxs])
|
17 |
+
else:
|
18 |
+
silhouette, db = -1, -1
|
19 |
+
|
20 |
+
return labels, embeddings, {"silhouette": silhouette, "db": db}
|
21 |
+
|