import gradio as gr import pandas as pd import json import io import os import random from collections import defaultdict from sentence_transformers import SentenceTransformer import hdbscan from sklearn.metrics import silhouette_score, davies_bouldin_score import numpy as np import umap from sklearn.preprocessing import MinMaxScaler # 加载模型,放到全局避免重复加载 model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") def color_for_label(label): try: label_int = int(label) except: label_int = -1 if label_int < 0: return "rgb(150,150,150)" # 噪声点 random.seed(label_int + 1000) return f"rgb({random.randint(50,200)}, {random.randint(50,200)}, {random.randint(50,200)})" def cluster_sentences(sentences): embeddings = model.encode(sentences) clusterer = hdbscan.HDBSCAN(min_cluster_size=2, metric='euclidean') labels = clusterer.fit_predict(embeddings) valid_idxs = labels != -1 if np.sum(valid_idxs) > 1: silhouette = silhouette_score(embeddings[valid_idxs], labels[valid_idxs]) db = davies_bouldin_score(embeddings[valid_idxs], labels[valid_idxs]) else: silhouette, db = -1, -1 return labels, embeddings, {"silhouette": silhouette, "db": db} def generate_force_graph(sentences, labels): nodes = [] links = [] label_map = defaultdict(list) for i, (s, l) in enumerate(zip(sentences, labels)): color = color_for_label(l) nodes.append({"name": s, "symbolSize": 10, "category": int(l) if l >=0 else 0, "itemStyle": {"color": color}}) label_map[l].append(i) for group in label_map.values(): max_edges_per_node = 10 for i in group: connected = 0 for j in group: if i < j: links.append({"source": sentences[i], "target": sentences[j]}) connected += 1 if connected >= max_edges_per_node: break return {"type": "force", "nodes": nodes, "links": links} def generate_bubble_chart(sentences, labels): counts = defaultdict(int) for l in labels: counts[l] += 1 data = [{"name": f"簇{l}" if l >=0 else "噪声", "value": v, "itemStyle": {"color": color_for_label(l)}} for l, v in counts.items()] return {"type": "bubble", "series": [{"type": "scatter", "data": data}]} def generate_umap_plot(embeddings, labels): reducer = umap.UMAP(n_components=2, random_state=42) umap_emb = reducer.fit_transform(embeddings) scaled = MinMaxScaler().fit_transform(umap_emb) data = [{"x": float(x), "y": float(y), "label": int(l), "itemStyle": {"color": color_for_label(l)}} for (x, y), l in zip(scaled, labels)] return {"type": "scatter", "series": [{"data": data}]} def process(text_input, file_obj): # 先收集所有句子 sentences = [] # 读取txt文件内容 if file_obj is not None: try: # file_obj 是 tempfile.NamedTemporaryFile,直接打开它的 file_obj.name with open(file_obj.name, "r", encoding="utf-8") as f: content = f.read() lines = content.strip().splitlines() sentences.extend([line.strip() for line in lines if line.strip()]) except Exception as e: return f"❌ 文件读取失败: {str(e)}", None, None, None, None, None, None # 处理文本框输入 if text_input: lines = text_input.strip().splitlines() sentences.extend([line.strip() for line in lines if line.strip()]) # 去重 sentences = list(dict.fromkeys(sentences)) if len(sentences) < 2: return "⚠️ 请输入至少两个有效句子进行聚类", None, None, None, None, None, None # 聚类 labels, embeddings, scores = cluster_sentences(sentences) # 生成数据 df = pd.DataFrame({"句子": sentences, "簇ID": labels}) force_json = generate_force_graph(sentences, labels) bubble_json = generate_bubble_chart(sentences, labels) umap_json = generate_umap_plot(embeddings, labels) csv_data = df.to_csv(index=False, encoding="utf-8-sig") return ( f"✅ Silhouette: {scores['silhouette']:.4f}, DB: {scores['db']:.4f}", df, json.dumps(force_json, ensure_ascii=False, indent=2), json.dumps(bubble_json, ensure_ascii=False, indent=2), json.dumps(umap_json, ensure_ascii=False, indent=2), csv_data ) def csv_download(csv_str): return io.BytesIO(csv_str.encode("utf-8-sig")) with gr.Blocks() as demo: gr.Markdown("# 中文句子语义聚类 Demo") with gr.Row(): text_input = gr.Textbox(label="输入多句子(每行一句)", lines=8) file_input = gr.File(label="上传文本文件 (.txt)", file_types=['.txt']) btn = gr.Button("开始聚类") output_score = gr.Textbox(label="聚类指标", interactive=False) output_table = gr.Dataframe(headers=["句子", "簇ID"], interactive=False) output_force = gr.JSON(label="力导图数据") output_bubble = gr.JSON(label="气泡图数据") output_umap = gr.JSON(label="UMAP二维数据") output_csv = gr.File(label="导出CSV") btn.click( fn=process, inputs=[text_input, file_input], outputs=[output_score, output_table, output_force, output_bubble, output_umap, output_csv] ) output_csv.download = csv_download demo.launch()