import numpy as np import umap from sklearn.preprocessing import MinMaxScaler from collections import defaultdict import random def color_for_label(label): try: label_int = int(label) except: label_int = -1 if label_int < 0: return "rgb(150,150,150)" # 噪声点(-1)用灰色 random.seed(label_int + 1000) return f"rgb({random.randint(50,200)}, {random.randint(50,200)}, {random.randint(50,200)})" def generate_force_graph(sentences, labels): nodes = [] links = [] label_map = defaultdict(list) for i, (s, l) in enumerate(zip(sentences, labels)): color = color_for_label(l) nodes.append({"name": s, "symbolSize": 10, "category": int(l) if l >=0 else 0, "itemStyle": {"color": color}}) label_map[l].append(i) for group in label_map.values(): # 可选:限制边数,避免边太多 max_edges_per_node = 10 for i in group: connected = 0 for j in group: if i < j: links.append({"source": sentences[i], "target": sentences[j]}) connected += 1 if connected >= max_edges_per_node: break return {"type": "force", "nodes": nodes, "links": links} def generate_bubble_chart(sentences, labels): counts = defaultdict(int) for l in labels: counts[l] += 1 data = [{"name": f"簇{l}" if l >=0 else "噪声", "value": v, "itemStyle": {"color": color_for_label(l)}} for l, v in counts.items()] return {"type": "bubble", "series": [{"type": "scatter", "data": data}]} def generate_umap_plot(embeddings, labels): reducer = umap.UMAP(n_components=2, random_state=42) umap_emb = reducer.fit_transform(embeddings) scaled = MinMaxScaler().fit_transform(umap_emb) data = [{"x": float(x), "y": float(y), "label": int(l), "itemStyle": {"color": color_for_label(l)}} for (x, y), l in zip(scaled, labels)] return {"type": "scatter", "series": [{"data": data}]}