File size: 1,186 Bytes
baacefd
 
 
 
 
 
 
259568f
 
0bc2b63
 
259568f
 
 
 
baacefd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96b2a9a
baacefd
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import streamlit as st
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np
from PIL import Image
import base64

H = 256
W = 256

from metrics import dice_loss, dice_coef

model_path = "model.h5"

model = tf.keras.models.load_model(model_path,custom_objects={'dice_loss': dice_loss, 'dice_coef': dice_coef})

st.set_page_config(
    page_title="Brain Tumor Segmentation App",
    page_icon=":brain:",
    layout="wide"
)

custom_style = """
<style>
    div[data-testid="stToolbar"],
    div[data-testid="stDecoration"],
    div[data-testid="stStatusWidget"],
    #MainMenu,
    header,
    footer {
        visibility: hidden;
        height: 0%;
    }
</style>
"""
st.markdown(custom_style, unsafe_allow_html=True)


def main():
    st.title("Brain Tumor Segmentation")

    uploaded_file = st.file_uploader("Upload an MRI image for tumor segmentation...", type=["jpg", "png", "jpeg"])

    if uploaded_file is not None:
        original_image = Image.open(uploaded_file)
        st.image(original_image, caption="Uploaded Image", use_column_width=True)

        st.markdown("## Tumor Segmentation Result")

if __name__ == "__main__":
    main()