Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,9 @@ from tensorflow.keras.preprocessing import image
|
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
import base64
|
|
|
|
|
|
|
7 |
|
8 |
H = 256
|
9 |
W = 256
|
@@ -36,16 +39,52 @@ custom_style = """
|
|
36 |
st.markdown(custom_style, unsafe_allow_html=True)
|
37 |
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
def main():
|
40 |
-
st.title("Brain Tumor Segmentation")
|
41 |
|
42 |
-
|
|
|
43 |
|
44 |
if uploaded_file is not None:
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
if __name__ == "__main__":
|
51 |
main()
|
|
|
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
import base64
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
|
11 |
H = 256
|
12 |
W = 256
|
|
|
39 |
st.markdown(custom_style, unsafe_allow_html=True)
|
40 |
|
41 |
|
42 |
+
# Function to perform inference
|
43 |
+
def perform_inference(img):
|
44 |
+
image = cv2.imread(img, cv2.IMREAD_COLOR)
|
45 |
+
original_shape = image.shape[:2]
|
46 |
+
original_image = image.copy()
|
47 |
+
image = cv2.resize(image, (W, H))
|
48 |
+
image = image/255.0
|
49 |
+
image = np.expand_dims(image, axis=0)
|
50 |
+
|
51 |
+
mask = model.predict(image, verbose=0)[0]
|
52 |
+
mask = cv2.resize(mask, (original_shape[1], original_shape[0]))
|
53 |
+
mask = mask >= 0.5
|
54 |
+
mask = np.expand_dims(mask, axis=-1)
|
55 |
+
segmented_image = original_image * mask
|
56 |
+
return original_image, mask, segmented_image
|
57 |
+
|
58 |
+
# Function to display images using Matplotlib
|
59 |
+
def show_image(image, title="Image"):
|
60 |
+
plt.imshow(image, cmap='gray')
|
61 |
+
plt.title(title)
|
62 |
+
plt.axis('off')
|
63 |
+
st.pyplot()
|
64 |
+
|
65 |
+
# Streamlit app
|
66 |
def main():
|
67 |
+
st.title("Brain Tumor Segmentation App")
|
68 |
|
69 |
+
# Allow user to upload an image
|
70 |
+
uploaded_file = st.file_uploader("Upload a brain tumor image...", type=["jpg", "png", "jpeg"])
|
71 |
|
72 |
if uploaded_file is not None:
|
73 |
+
# Perform inference on the uploaded image
|
74 |
+
original_image, mask, segmented_image = perform_inference(uploaded_file)
|
75 |
|
76 |
+
# Display original image
|
77 |
+
st.subheader("Original Image")
|
78 |
+
show_image(original_image, title="Original Image")
|
79 |
+
|
80 |
+
# Display mask
|
81 |
+
st.subheader("Mask")
|
82 |
+
show_image(mask, title="Mask")
|
83 |
+
|
84 |
+
# Display segmented image
|
85 |
+
st.subheader("Segmented Brain Tumor")
|
86 |
+
show_image(segmented_image, title="Segmented Brain Tumor")
|
87 |
|
88 |
if __name__ == "__main__":
|
89 |
main()
|
90 |
+
|