import streamlit as st import tensorflow as tf from tensorflow.keras.preprocessing import image import numpy as np from PIL import Image import base64 # Load the pre-trained brain tumor segmentation model model = tf.keras.models.load_model("model.h5") img_size = (256, 256) # Adjust based on your model's input size st.set_page_config( page_title="Brain Tumor Segmentation App", page_icon=":brain:", layout="wide" ) custom_style = """ """ st.markdown(custom_style, unsafe_allow_html=True) def main(): st.title("Brain Tumor Segmentation App") uploaded_file = st.file_uploader("Upload an MRI image for tumor segmentation...", type=["jpg", "png", "jpeg"]) if uploaded_file is not None: original_image = Image.open(uploaded_file) st.image(original_image, caption="Uploaded Image", use_column_width=True) st.markdown("## Tumor Segmentation Result") if __name__ == "__main__": main()