File size: 2,840 Bytes
501e0be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import streamlit as st
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np
from PIL import Image
import base64
# Load the pre-trained model
model = tf.keras.models.load_model('model.h5')
# Define the target size for the model
img_size = (224, 224)
# Function to preprocess the image
def preprocess_image(img):
img = image.load_img(img, target_size=img_size)
img_array = image.img_to_array(img)
img_array = img_array / 255.0 # Normalize pixel values to between 0 and 1
img_array = np.expand_dims(img_array, axis=0)
return img_array
# Function to make predictions
def predict_image(img):
img_array = preprocess_image(img)
prediction = model.predict(img_array)
prediction = np.squeeze(prediction, axis=0)
return prediction
# Function to display and provide a download link for an image
def display_image_with_download(image_path, caption, download_text):
image = Image.open(image_path)
st.image(image, caption=caption, use_column_width=True)
# Generate a download link
with open(image_path, 'rb') as f:
data = f.read()
base64_data = base64.b64encode(data).decode('utf-8')
href = f'<a href="data:application/octet-stream;base64,{base64_data}" download="{download_text}.jpg">Download {download_text}</a>'
st.markdown(href, unsafe_allow_html=True)
# Streamlit app
def main():
st.title("Pneumonia Detection")
# Allow user to upload an image
uploaded_file = st.file_uploader("Upload a chest X-ray image in JPG format...", type="jpg")
# Example instructions
st.markdown("""
Example Instructions:
- Upload a chest X-ray image in JPG format.
- Or, download sample images below and check the predictions.
""")
# Provide links to download sample images
st.write("**Download Sample Images:**")
pneumonic_download = st.button("Download Pneumonic Image")
normal_download = st.button("Download Normal Image")
if pneumonic_download:
pneumonic_image_path = "test-pneumonia_028.jpg" # Replace with actual path
display_image_with_download(pneumonic_image_path, "Pneumonic Image", "Pneumonic Image")
if normal_download:
normal_image_path = "test-normal_001.jpg" # Replace with actual path
display_image_with_download(normal_image_path, "Normal Image", "Normal Image")
if uploaded_file is not None:
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
# Make predictions
prediction = predict_image(uploaded_file)
# Display the results
st.write("**Prediction:**")
class_label = "Pneumonia" if prediction > 0.5 else "Normal"
st.write(f"The image is classified as **{class_label}**.")
if __name__ == "__main__":
main()
|