# import streamlit as st | |
# import tensorflow as tf | |
# from tensorflow.keras.preprocessing import image | |
# import numpy as np | |
# from PIL import Image | |
# import base64 | |
# hide_streamlit_style = """ | |
# <style> | |
# div[data-testid="stToolbar"] { | |
# visibility: hidden; | |
# height: 0%; | |
# position: fixed; | |
# } | |
# div[data-testid="stDecoration"] { | |
# visibility: hidden; | |
# height: 0%; | |
# position: fixed; | |
# } | |
# div[data-testid="stStatusWidget"] { | |
# visibility: hidden; | |
# height: 0%; | |
# position: fixed; | |
# } | |
# #MainMenu { | |
# visibility: hidden; | |
# height: 0%; | |
# } | |
# header { | |
# visibility: hidden; | |
# height: 0%; | |
# } | |
# footer { | |
# visibility: hidden; | |
# height: 0%; | |
# } | |
# </style> | |
# """ | |
# st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
# # Load the pre-trained model | |
# model = tf.keras.models.load_model('model.h5') | |
# # Define the target size for the model | |
# img_size = (224, 224) | |
# # Function to preprocess the image | |
# def preprocess_image(img): | |
# img = image.load_img(img, target_size=img_size) | |
# img_array = image.img_to_array(img) | |
# img_array = img_array / 255.0 # Normalize pixel values to between 0 and 1 | |
# img_array = np.expand_dims(img_array, axis=0) | |
# return img_array | |
# # Function to make predictions | |
# def predict_image(img): | |
# img_array = preprocess_image(img) | |
# prediction = model.predict(img_array) | |
# prediction = np.squeeze(prediction, axis=0) | |
# return prediction | |
# # Function to display and provide a download link for an image | |
# def display_image_with_download(image_path, caption, download_text): | |
# image = Image.open(image_path) | |
# st.image(image, caption=caption, use_column_width=True) | |
# # Generate a download link | |
# with open(image_path, 'rb') as f: | |
# data = f.read() | |
# base64_data = base64.b64encode(data).decode('utf-8') | |
# href = f'<a href="data:application/octet-stream;base64,{base64_data}" download="{download_text}.jpg">Download {download_text}</a>' | |
# st.markdown(href, unsafe_allow_html=True) | |
# # Streamlit app | |
# def main(): | |
# st.title("Pneumonia Detection") | |
# # Allow user to upload an image | |
# uploaded_file = st.file_uploader("Upload a chest X-ray image in JPG format...", type="jpg") | |
# # Example instructions | |
# st.markdown(""" | |
# Example Instructions: | |
# - Upload a chest X-ray image in JPG format. | |
# - Or, download sample images below and check the predictions. | |
# """) | |
# # Provide links to download sample images | |
# st.write("**Download Sample Images:**") | |
# pneumonic_download = st.button("Download Pneumonic Image") | |
# normal_download = st.button("Download Normal Image") | |
# if pneumonic_download: | |
# pneumonic_image_path = "test-pneumonia_028.jpg" # Replace with actual path | |
# display_image_with_download(pneumonic_image_path, "Pneumonic Image", "Pneumonic Image") | |
# if normal_download: | |
# normal_image_path = "test-normal_001.jpg" # Replace with actual path | |
# display_image_with_download(normal_image_path, "Normal Image", "Normal Image") | |
# if uploaded_file is not None: | |
# st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) | |
# # Make predictions | |
# prediction = predict_image(uploaded_file) | |
# # Display the results | |
# st.write("**Prediction:**") | |
# class_label = "Pneumonia" if prediction > 0.5 else "Normal" | |
# st.write(f"The image is classified as **{class_label}**.") | |
# if __name__ == "__main__": | |
# main() | |
import streamlit as st | |
import tensorflow as tf | |
from tensorflow.keras.preprocessing import image | |
import numpy as np | |
from PIL import Image | |
import base64 | |
# Hide Streamlit menu and footer | |
hide_streamlit_style = """ | |
<style> | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
# Load the pre-trained model | |
model = tf.keras.models.load_model('model.h5') | |
# Define the target size for the model | |
img_size = (224, 224) | |
# Function to preprocess the image | |
def preprocess_image(img): | |
img = image.load_img(img, target_size=img_size) | |
img_array = image.img_to_array(img) | |
img_array = img_array / 255.0 # Normalize pixel values to between 0 and 1 | |
img_array = np.expand_dims(img_array, axis=0) | |
return img_array | |
# Function to make predictions | |
def predict_image(img): | |
img_array = preprocess_image(img) | |
prediction = model.predict(img_array) | |
prediction = np.squeeze(prediction, axis=0) | |
return prediction | |
# Function to display and provide a download link for an image | |
def display_image_with_download(image_path, caption, download_text): | |
image = Image.open(image_path) | |
st.image(image, caption=caption, use_column_width=True) | |
# Generate a download link | |
with open(image_path, 'rb') as f: | |
data = f.read() | |
base64_data = base64.b64encode(data).decode('utf-8') | |
href = f'<a href="data:application/octet-stream;base64,{base64_data}" download="{download_text}.jpg">Download {download_text}</a>' | |
st.markdown(href, unsafe_allow_html=True) | |
# Streamlit app | |
def main(): | |
# Set app title and page icon | |
st.set_page_config( | |
page_title="Pneumonia Detection App", | |
page_icon=":microscope:", | |
layout="wide" | |
) | |
# Add custom CSS for styling | |
st.markdown(""" | |
<style> | |
body { | |
background-color: #f5f5f5; | |
} | |
.st-bw { | |
background-color: #ffffff; | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
border-radius: 10px; | |
padding: 20px; | |
margin-bottom: 20px; | |
} | |
.st-bw img { | |
max-width: 100%; | |
border-radius: 10px; | |
} | |
.st-bw a { | |
color: #007bff; | |
} | |
.st-bw button { | |
background-color: #007bff; | |
color: #ffffff; | |
border: none; | |
padding: 10px 20px; | |
font-size: 16px; | |
border-radius: 5px; | |
cursor: pointer; | |
} | |
.st-bw button:hover { | |
background-color: #0056b3; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Display app title | |
st.title("Pneumonia Detection App") | |
# Allow user to upload an image | |
uploaded_file = st.file_uploader("Upload a chest X-ray image in JPG format...", type="jpg", key="fileUploader") | |
# Example instructions | |
st.markdown(""" | |
**Example Instructions:** | |
- Upload a chest X-ray image in JPG format. | |
- Or, download sample images below and check the predictions. | |
""") | |
# Provide links to download sample images | |
st.write("**Download Sample Images:**") | |
pneumonic_download = st.button("Download Pneumonic Image") | |
normal_download = st.button("Download Normal Image") | |
if pneumonic_download: | |
pneumonic_image_path = "test-pneumonia_028.jpg" # Replace with actual path | |
display_image_with_download(pneumonic_image_path, "Pneumonic Image", "Pneumonic Image") | |
if normal_download: | |
normal_image_path = "test-normal_001.jpg" # Replace with actual path | |
display_image_with_download(normal_image_path, "Normal Image", "Normal Image") | |
if uploaded_file is not None: | |
# Display the uploaded image in a styled container | |
st.markdown('<div class="st-bw">', unsafe_allow_html=True) | |
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Make predictions | |
prediction = predict_image(uploaded_file) | |
# Display the results | |
st.write("**Prediction:**") | |
class_label = "Pneumonia" if prediction > 0.5 else "Normal" | |
st.write(f"The image is classified as **{class_label}**.") | |
if __name__ == "__main__": | |
main() | |