pneumonia / app.py
subek's picture
Update app.py
b749b00 verified
import streamlit as st
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np
from PIL import Image
import base64
st.set_page_config(
page_title="Pneumonia Detection App",
page_icon=":lungs:",
layout="wide"
)
custom_style = """
<style>
div[data-testid="stToolbar"],
div[data-testid="stDecoration"],
div[data-testid="stStatusWidget"],
#MainMenu,
header,
footer {
visibility: hidden;
height: 0%;
}
</style>
"""
st.markdown(custom_style, unsafe_allow_html=True)
model = tf.keras.models.load_model('fixed_model.h5')
img_size = (224, 224)
def preprocess_image(img):
img = image.load_img(img, target_size=img_size)
img_array = image.img_to_array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0)
return img_array
def predict_image(img):
img_array = preprocess_image(img)
prediction = np.squeeze(model.predict(img_array), axis=0)
return prediction
def display_image_with_download(image_path, caption, download_text):
image = Image.open(image_path)
st.image(image, caption=caption, use_column_width=True)
with open(image_path, 'rb') as f:
data = f.read()
base64_data = base64.b64encode(data).decode('utf-8')
href = f'<a href="data:application/octet-stream;base64,{base64_data}" download="{download_text}.jpg">Download {download_text}</a>'
st.markdown(href, unsafe_allow_html=True)
def main():
st.title("Pneumonia Detection")
uploaded_file = st.file_uploader("Upload a chest X-ray image...", type=["jpg", "png", "jpeg"])
st.markdown("""
Example Instructions:
- Upload a chest X-ray image in JPG format.
- Or, download sample images below and check the predictions.
""")
st.write("**Download/View Sample Images:**")
normal_download = st.button("View Normal Image")
pneumonic_download = st.button("View Pneumonic Image")
if normal_download:
normal_image_path = "test-normal_001.jpg"
display_image_with_download(normal_image_path, "Normal Image", "Normal Image")
if pneumonic_download:
pneumonic_image_path = "test-pneumonia_028.jpg"
display_image_with_download(pneumonic_image_path, "Pneumonic Image", "Pneumonic Image")
if uploaded_file is not None:
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
st.markdown('</div>', unsafe_allow_html=True)
prediction = predict_image(uploaded_file)
st.write("**Prediction:**")
class_label = "Pneumonia" if prediction > 0.5 else "Normal"
st.write(f"The image is classified as **{class_label}**.")
if __name__ == "__main__":
main()