|
import streamlit as st |
|
import tensorflow as tf |
|
from tensorflow.keras.preprocessing import image |
|
import numpy as np |
|
from PIL import Image |
|
import base64 |
|
|
|
st.set_page_config( |
|
page_title="Pneumonia Detection App", |
|
page_icon=":lungs:", |
|
layout="wide" |
|
) |
|
|
|
custom_style = """ |
|
<style> |
|
div[data-testid="stToolbar"], |
|
div[data-testid="stDecoration"], |
|
div[data-testid="stStatusWidget"], |
|
#MainMenu, |
|
header, |
|
footer { |
|
visibility: hidden; |
|
height: 0%; |
|
} |
|
</style> |
|
|
|
""" |
|
st.markdown(custom_style, unsafe_allow_html=True) |
|
|
|
model = tf.keras.models.load_model('fixed_model.h5') |
|
img_size = (224, 224) |
|
|
|
def preprocess_image(img): |
|
img = image.load_img(img, target_size=img_size) |
|
img_array = image.img_to_array(img) / 255.0 |
|
img_array = np.expand_dims(img_array, axis=0) |
|
return img_array |
|
|
|
def predict_image(img): |
|
img_array = preprocess_image(img) |
|
prediction = np.squeeze(model.predict(img_array), axis=0) |
|
return prediction |
|
|
|
def display_image_with_download(image_path, caption, download_text): |
|
image = Image.open(image_path) |
|
st.image(image, caption=caption, use_column_width=True) |
|
|
|
with open(image_path, 'rb') as f: |
|
data = f.read() |
|
base64_data = base64.b64encode(data).decode('utf-8') |
|
href = f'<a href="data:application/octet-stream;base64,{base64_data}" download="{download_text}.jpg">Download {download_text}</a>' |
|
st.markdown(href, unsafe_allow_html=True) |
|
|
|
def main(): |
|
st.title("Pneumonia Detection") |
|
|
|
uploaded_file = st.file_uploader("Upload a chest X-ray image...", type=["jpg", "png", "jpeg"]) |
|
|
|
st.markdown(""" |
|
Example Instructions: |
|
- Upload a chest X-ray image in JPG format. |
|
- Or, download sample images below and check the predictions. |
|
""") |
|
|
|
st.write("**Download/View Sample Images:**") |
|
|
|
normal_download = st.button("View Normal Image") |
|
pneumonic_download = st.button("View Pneumonic Image") |
|
|
|
if normal_download: |
|
normal_image_path = "test-normal_001.jpg" |
|
display_image_with_download(normal_image_path, "Normal Image", "Normal Image") |
|
|
|
if pneumonic_download: |
|
pneumonic_image_path = "test-pneumonia_028.jpg" |
|
display_image_with_download(pneumonic_image_path, "Pneumonic Image", "Pneumonic Image") |
|
|
|
if uploaded_file is not None: |
|
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) |
|
st.markdown('</div>', unsafe_allow_html=True) |
|
|
|
prediction = predict_image(uploaded_file) |
|
|
|
st.write("**Prediction:**") |
|
class_label = "Pneumonia" if prediction > 0.5 else "Normal" |
|
st.write(f"The image is classified as **{class_label}**.") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|