Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +150 -0
- requirements .txt +5 -0
app.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from peft import PeftModel, PeftConfig
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
|
7 |
+
def load_model(model_id, model_type="base"):
|
8 |
+
try:
|
9 |
+
if model_type == "base":
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
model_id,
|
13 |
+
torch_dtype=torch.float16,
|
14 |
+
device_map="auto"
|
15 |
+
)
|
16 |
+
return tokenizer, model
|
17 |
+
else: # finetuned model with PEFT
|
18 |
+
# Load the base model first
|
19 |
+
base_model_id = "satyanayak/gemma-3-base"
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
21 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
22 |
+
base_model_id,
|
23 |
+
torch_dtype=torch.float16,
|
24 |
+
device_map="auto"
|
25 |
+
)
|
26 |
+
|
27 |
+
# Load and merge the PEFT adapters
|
28 |
+
model = PeftModel.from_pretrained(
|
29 |
+
base_model,
|
30 |
+
model_id,
|
31 |
+
torch_dtype=torch.float16,
|
32 |
+
device_map="auto"
|
33 |
+
)
|
34 |
+
return tokenizer, model
|
35 |
+
except Exception as e:
|
36 |
+
print(f"Error loading {model_type} model: {str(e)}")
|
37 |
+
return None, None
|
38 |
+
|
39 |
+
# Load base model and tokenizer
|
40 |
+
base_model_id = "satyanayak/gemma-3-base"
|
41 |
+
base_tokenizer, base_model = load_model(base_model_id, "base")
|
42 |
+
|
43 |
+
# Load finetuned model and tokenizer
|
44 |
+
finetuned_model_id = "satyanayak/gemma-3-GRPO"
|
45 |
+
finetuned_tokenizer, finetuned_model = load_model(finetuned_model_id, "finetuned")
|
46 |
+
|
47 |
+
def generate_base_response(prompt, max_length=512):
|
48 |
+
if base_model is None or base_tokenizer is None:
|
49 |
+
return "Error: Base model failed to load. Please check if the model files are properly uploaded to Hugging Face."
|
50 |
+
|
51 |
+
try:
|
52 |
+
inputs = base_tokenizer(prompt, return_tensors="pt").to(base_model.device)
|
53 |
+
outputs = base_model.generate(
|
54 |
+
**inputs,
|
55 |
+
max_length=max_length,
|
56 |
+
num_return_sequences=1,
|
57 |
+
temperature=0.7,
|
58 |
+
do_sample=True,
|
59 |
+
pad_token_id=base_tokenizer.eos_token_id
|
60 |
+
)
|
61 |
+
response = base_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
62 |
+
return response
|
63 |
+
except Exception as e:
|
64 |
+
return f"Error generating response with base model: {str(e)}"
|
65 |
+
|
66 |
+
def generate_finetuned_response(prompt, max_length=512):
|
67 |
+
if finetuned_model is None or finetuned_tokenizer is None:
|
68 |
+
return "Error: Finetuned model failed to load. Please check if the model files are properly uploaded to Hugging Face."
|
69 |
+
|
70 |
+
try:
|
71 |
+
inputs = finetuned_tokenizer(prompt, return_tensors="pt").to(finetuned_model.device)
|
72 |
+
outputs = finetuned_model.generate(
|
73 |
+
**inputs,
|
74 |
+
max_length=max_length,
|
75 |
+
num_return_sequences=1,
|
76 |
+
temperature=0.7,
|
77 |
+
do_sample=True,
|
78 |
+
pad_token_id=finetuned_tokenizer.eos_token_id
|
79 |
+
)
|
80 |
+
response = finetuned_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
81 |
+
return response
|
82 |
+
except Exception as e:
|
83 |
+
return f"Error generating response with finetuned model: {str(e)}"
|
84 |
+
|
85 |
+
# Example prompts
|
86 |
+
examples = [
|
87 |
+
["What is the sqrt of 101"],
|
88 |
+
["How many r's are in strawberry?"],
|
89 |
+
["If Tom has 3 more apples than Jerry and Jerry has 5 apples, how many apples does Tom have?"]
|
90 |
+
]
|
91 |
+
|
92 |
+
# Create the Gradio interface
|
93 |
+
with gr.Blocks() as demo:
|
94 |
+
gr.Markdown("# Gemma-3 Model Comparison Demo")
|
95 |
+
gr.Markdown("Compare responses between the base model and the GRPO-finetuned model.")
|
96 |
+
|
97 |
+
with gr.Row():
|
98 |
+
# Base Model Column
|
99 |
+
with gr.Column(scale=1):
|
100 |
+
gr.Markdown("## Base Model (Gemma-3)")
|
101 |
+
base_input = gr.Textbox(
|
102 |
+
label="Enter your prompt",
|
103 |
+
placeholder="Type your prompt here...",
|
104 |
+
lines=5
|
105 |
+
)
|
106 |
+
base_generate_btn = gr.Button("Generate with Base Model")
|
107 |
+
base_output = gr.Textbox(label="Base Model Output", lines=10)
|
108 |
+
|
109 |
+
gr.Examples(
|
110 |
+
examples=examples,
|
111 |
+
inputs=base_input,
|
112 |
+
outputs=base_output,
|
113 |
+
fn=generate_base_response,
|
114 |
+
cache_examples=True
|
115 |
+
)
|
116 |
+
|
117 |
+
# Finetuned Model Column
|
118 |
+
with gr.Column(scale=1):
|
119 |
+
gr.Markdown("## GRPO-Finetuned Model")
|
120 |
+
finetuned_input = gr.Textbox(
|
121 |
+
label="Enter your prompt",
|
122 |
+
placeholder="Type your prompt here...",
|
123 |
+
lines=5
|
124 |
+
)
|
125 |
+
finetuned_generate_btn = gr.Button("Generate with Finetuned Model")
|
126 |
+
finetuned_output = gr.Textbox(label="Finetuned Model Output", lines=10)
|
127 |
+
|
128 |
+
gr.Examples(
|
129 |
+
examples=examples,
|
130 |
+
inputs=finetuned_input,
|
131 |
+
outputs=finetuned_output,
|
132 |
+
fn=generate_finetuned_response,
|
133 |
+
cache_examples=True
|
134 |
+
)
|
135 |
+
|
136 |
+
# Connect buttons to their respective functions
|
137 |
+
base_generate_btn.click(
|
138 |
+
fn=generate_base_response,
|
139 |
+
inputs=base_input,
|
140 |
+
outputs=base_output
|
141 |
+
)
|
142 |
+
|
143 |
+
finetuned_generate_btn.click(
|
144 |
+
fn=generate_finetuned_response,
|
145 |
+
inputs=finetuned_input,
|
146 |
+
outputs=finetuned_output
|
147 |
+
)
|
148 |
+
|
149 |
+
if __name__ == "__main__":
|
150 |
+
demo.launch()
|
requirements .txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.19.2
|
2 |
+
transformers>=4.38.0
|
3 |
+
torch>=2.2.0
|
4 |
+
accelerate>=0.27.0
|
5 |
+
peft>=0.9.0
|