Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,413 Bytes
f4d67a4 7a61446 455645c 024461f 12e638e 5a75be5 48c3c18 5a75be5 f4d67a4 2911bf0 12e638e 7a61446 f4d67a4 12e638e 5a75be5 12e638e f4d67a4 5a75be5 48c3c18 5a75be5 48c3c18 f4d67a4 2911bf0 12e638e 5a75be5 12e638e 2911bf0 7a61446 12e638e 5a75be5 12e638e 5a75be5 12e638e 5a75be5 12e638e 5a75be5 12e638e 5a75be5 12e638e 7a61446 5a75be5 2911bf0 024461f 5a75be5 024461f 2911bf0 5a75be5 12e638e 2911bf0 5a75be5 2911bf0 12e638e 5a75be5 12e638e 2911bf0 5a75be5 2911bf0 455645c 5a75be5 455645c 5a75be5 455645c 5a75be5 455645c 5a75be5 455645c 5a75be5 455645c 5a75be5 455645c 024461f 5a75be5 024461f 5a75be5 024461f 5a75be5 024461f 5a75be5 024461f 5a75be5 7a61446 5a75be5 12e638e 5a75be5 2911bf0 5a75be5 2911bf0 5a75be5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
import gradio as gr
import random
import difflib
import re
import jiwer
import torch
import torchaudio
import numpy as np
from transformers import (
AutoProcessor,
AutoModelForSpeechSeq2Seq,
AutoTokenizer,
AutoModel
)
from TTS.api import TTS
import librosa
import soundfile as sf
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
import warnings
warnings.filterwarnings("ignore")
# ---------------- CONFIG ---------------- #
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
LANG_CODES = {
"English": "en",
"Tamil": "ta",
"Malayalam": "ml",
"Hindi": "hi",
"Sanskrit": "sa"
}
# AI4Bharat model configurations
ASR_MODELS = {
"English": "openai/whisper-base.en",
"Tamil": "ai4bharat/whisper-medium-ta",
"Malayalam": "ai4bharat/whisper-medium-ml",
"Hindi": "ai4bharat/whisper-medium-hi",
"Sanskrit": "ai4bharat/whisper-medium-hi" # Fallback to Hindi for Sanskrit
}
TTS_MODELS = {
"English": "tts_models/en/ljspeech/tacotron2-DDC",
"Tamil": "tts_models/ta/mai/tacotron2-DDC",
"Malayalam": "tts_models/ml/mai/tacotron2-DDC",
"Hindi": "tts_models/hi/mai/tacotron2-DDC",
"Sanskrit": "tts_models/hi/mai/tacotron2-DDC" # Fallback to Hindi
}
LANG_PRIMERS = {
"English": ("Transcribe in English.",
"Write only in English. Example: This is an English sentence."),
"Tamil": ("தமிழில் எழுதுக.",
"தமிழ் எழுத்துக்களில் மட்டும் எழுதவும். உதாரணம்: இது ஒரு தமிழ் வாக்கியம்."),
"Malayalam": ("മലയാളത്തിൽ എഴുതുക.",
"മലയാള ലിപിയിൽ മാത്രം എഴുതുക. ഉദാഹരണം: ഇതൊരു മലയാള വാക്യമാണ്."),
"Hindi": ("हिंदी में लिखें।",
"केवल देवनागरी लिपि में लिखें। उदाहरण: यह एक हिंदी वाक्य है।"),
"Sanskrit": ("संस्कृते लिखत।",
"देवनागरी लिपि में लिखें। उदाहरण: अहं संस्कृतं जानामि।")
}
SCRIPT_PATTERNS = {
"Tamil": re.compile(r"[-]"),
"Malayalam": re.compile(r"[ഀ-ൿ]"),
"Hindi": re.compile(r"[ऀ-ॿ]"),
"Sanskrit": re.compile(r"[ऀ-ॿ]"),
"English": re.compile(r"[A-Za-z]")
}
SENTENCE_BANK = {
"English": [
"The sun sets over the beautiful horizon.",
"Learning new languages opens many doors.",
"I enjoy reading books in the evening.",
"Technology has changed our daily lives.",
"Music brings people together across cultures."
],
"Tamil": [
"இன்று நல்ல வானிலை உள்ளது.",
"நான் தமிழ் கற்றுக்கொண்டு இருக்கிறேன்.",
"எனக்கு புத்தகம் படிக்க விருப்பம்.",
"தமிழ் மொழி மிகவும் அழகானது.",
"குடும்பத்துடன் நேரம் செலவிடுவது முக்கியம்."
],
"Malayalam": [
"എനിക്ക് മലയാളം വളരെ ഇഷ്ടമാണ്.",
"ഇന്ന് മഴപെയ്യുന്നു.",
"ഞാൻ പുസ്തകം വായിക്കുന്നു.",
"കേരളത്തിന്റെ പ്രകൃതി സുന്ദരമാണ്.",
"വിദ്യാഭ്യാസം ജീവിതത്തിൽ പ്രധാനമാണ്."
],
"Hindi": [
"आज मौसम बहुत अच्छा है।",
"मुझे हिंदी बोलना पसंद है।",
"मैं रोज किताब पढ़ता हूँ।",
"भारत की संस्कृति विविधतापूर्ण है।",
"शिक्षा हमारे भविष्य की कुंजी है।"
],
"Sanskrit": [
"अहं ग्रन्थं पठामि।",
"अद्य सूर्यः तेजस्वी अस्ति।",
"मम नाम रामः।",
"विद्या सर्वत्र पूज्यते।",
"सत्यमेव जयते।"
]
}
# ---------------- MODEL CACHE ---------------- #
asr_models = {}
tts_models = {}
def load_asr_model(language):
"""Load ASR model for specific language"""
if language not in asr_models:
try:
model_name = ASR_MODELS[language]
print(f"Loading ASR model for {language}: {model_name}")
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name).to(DEVICE)
asr_models[language] = {"processor": processor, "model": model}
print(f"✅ ASR model loaded for {language}")
except Exception as e:
print(f"❌ Failed to load ASR for {language}: {e}")
# Fallback to English model
if language != "English":
print(f"🔄 Falling back to English ASR for {language}")
load_asr_model("English")
asr_models[language] = asr_models["English"]
return asr_models[language]
def load_tts_model(language):
"""Load TTS model for specific language"""
if language not in tts_models:
try:
model_name = TTS_MODELS[language]
print(f"Loading TTS model for {language}: {model_name}")
tts = TTS(model_name=model_name).to(DEVICE)
tts_models[language] = tts
print(f"✅ TTS model loaded for {language}")
except Exception as e:
print(f"❌ Failed to load TTS for {language}: {e}")
# Fallback to English
if language != "English":
print(f"🔄 Falling back to English TTS for {language}")
load_tts_model("English")
tts_models[language] = tts_models["English"]
return tts_models[language]
# ---------------- HELPERS ---------------- #
def get_random_sentence(language_choice):
"""Get random sentence for practice"""
return random.choice(SENTENCE_BANK[language_choice])
def is_script(text, lang_name):
"""Check if text is in expected script"""
pattern = SCRIPT_PATTERNS.get(lang_name)
return bool(pattern.search(text)) if pattern else True
def transliterate_to_hk(text, lang_choice):
"""Transliterate Indic text to Harvard-Kyoto"""
mapping = {
"Tamil": sanscript.TAMIL,
"Malayalam": sanscript.MALAYALAM,
"Hindi": sanscript.DEVANAGARI,
"Sanskrit": sanscript.DEVANAGARI,
"English": None
}
script = mapping.get(lang_choice)
if script and is_script(text, lang_choice):
try:
return transliterate(text, script, sanscript.HK)
except:
return text
return text
def preprocess_audio(audio_path, target_sr=16000):
"""Preprocess audio for ASR"""
try:
# Load audio
audio, sr = librosa.load(audio_path, sr=target_sr)
# Normalize audio
audio = audio / np.max(np.abs(audio))
# Remove silence
audio, _ = librosa.effects.trim(audio, top_db=20)
return audio, target_sr
except Exception as e:
print(f"Audio preprocessing error: {e}")
return None, None
def transcribe_with_ai4bharat(audio_path, language, initial_prompt=""):
"""Transcribe audio using AI4Bharat models"""
try:
# Load model
asr_components = load_asr_model(language)
processor = asr_components["processor"]
model = asr_components["model"]
# Preprocess audio
audio, sr = preprocess_audio(audio_path)
if audio is None:
return "Error: Could not process audio"
# Prepare inputs
inputs = processor(audio, sampling_rate=sr, return_tensors="pt")
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
# Generate transcription
with torch.no_grad():
predicted_ids = model.generate(**inputs, max_length=200)
# Decode
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription.strip()
except Exception as e:
print(f"Transcription error for {language}: {e}")
return f"Error: Transcription failed - {str(e)}"
def synthesize_with_ai4bharat(text, language):
"""Synthesize speech using AI4Bharat TTS"""
if not text.strip():
return None
try:
# Load TTS model
tts = load_tts_model(language)
# Generate audio
audio_path = f"/tmp/tts_output_{hash(text)}.wav"
tts.tts_to_file(text=text, file_path=audio_path)
# Load generated audio
audio, sr = librosa.load(audio_path, sr=22050)
return sr, audio
except Exception as e:
print(f"TTS error for {language}: {e}")
return None
def highlight_differences(ref, hyp):
"""Highlight word-level differences"""
ref_words = ref.strip().split()
hyp_words = hyp.strip().split()
sm = difflib.SequenceMatcher(None, ref_words, hyp_words)
out_html = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == 'equal':
out_html.extend([f"<span style='color:green; font-weight:bold'>{w}</span>" for w in ref_words[i1:i2]])
elif tag == 'replace':
out_html.extend([f"<span style='color:red; text-decoration:line-through'>{w}</span>" for w in ref_words[i1:i2]])
out_html.extend([f"<span style='color:orange; font-weight:bold'> → {w}</span>" for w in hyp_words[j1:j2]])
elif tag == 'delete':
out_html.extend([f"<span style='color:red; text-decoration:line-through'>{w}</span>" for w in ref_words[i1:i2]])
elif tag == 'insert':
out_html.extend([f"<span style='color:orange; font-weight:bold'>+{w}</span>" for w in hyp_words[j1:j2]])
return " ".join(out_html)
def char_level_highlight(ref, hyp):
"""Highlight character-level differences"""
sm = difflib.SequenceMatcher(None, list(ref), list(hyp))
out = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == 'equal':
out.extend([f"<span style='color:green'>{c}</span>" for c in ref[i1:i2]])
elif tag in ('replace', 'delete'):
out.extend([f"<span style='color:red; text-decoration:underline; font-weight:bold'>{c}</span>" for c in ref[i1:i2]])
elif tag == 'insert':
out.extend([f"<span style='color:orange; background-color:yellow'>{c}</span>" for c in hyp[j1:j2]])
return "".join(out)
# ---------------- MAIN FUNCTION ---------------- #
def compare_pronunciation(audio, language_choice, intended_sentence):
"""Main function to compare pronunciation"""
if audio is None or not intended_sentence.strip():
return ("❌ No audio or intended sentence provided.", "", "", "", "", "",
None, None, "", "")
try:
print(f"Processing audio for {language_choice}")
# Pass 1: Raw transcription
primer_weak, _ = LANG_PRIMERS[language_choice]
actual_text = transcribe_with_ai4bharat(audio, language_choice, primer_weak)
# Pass 2: Target-biased transcription
_, primer_strong = LANG_PRIMERS[language_choice]
strict_prompt = f"{primer_strong}\nTarget: {intended_sentence}"
corrected_text = transcribe_with_ai4bharat(audio, language_choice, strict_prompt)
# Error metrics
try:
wer_val = jiwer.wer(intended_sentence, actual_text)
cer_val = jiwer.cer(intended_sentence, actual_text)
except:
wer_val, cer_val = 1.0, 1.0
# Transliteration
hk_translit = transliterate_to_hk(actual_text, language_choice)
if not is_script(actual_text, language_choice):
hk_translit = f"⚠️ Script mismatch: expected {language_choice} script"
# Visual feedback
diff_html = highlight_differences(intended_sentence, actual_text)
char_html = char_level_highlight(intended_sentence, actual_text)
# TTS synthesis
tts_intended = synthesize_with_ai4bharat(intended_sentence, language_choice)
tts_actual = synthesize_with_ai4bharat(actual_text, language_choice)
# Status message
status = f"✅ Analysis complete for {language_choice}"
if wer_val < 0.1:
status += " - Excellent pronunciation! 🎉"
elif wer_val < 0.3:
status += " - Good pronunciation! 👍"
elif wer_val < 0.5:
status += " - Needs improvement 📚"
else:
status += " - Keep practicing! 💪"
return (
status,
actual_text,
corrected_text,
hk_translit,
f"{wer_val:.3f}",
f"{cer_val:.3f}",
diff_html,
tts_intended,
tts_actual,
char_html,
intended_sentence
)
except Exception as e:
error_msg = f"❌ Error during analysis: {str(e)}"
print(error_msg)
return (error_msg, "", "", "", "", "", None, None, "", "")
# ---------------- UI ---------------- #
def create_interface():
with gr.Blocks(title="🎙️ AI4Bharat Pronunciation Trainer", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🎙️ AI4Bharat Pronunciation Trainer
Practice pronunciation in **Tamil, Malayalam, Hindi, Sanskrit & English** using state-of-the-art AI4Bharat models!
📋 **How to use:**
1. Select your target language
2. Generate a practice sentence
3. Record yourself reading it aloud
4. Get detailed feedback with error analysis
""")
with gr.Row():
with gr.Column(scale=2):
lang_choice = gr.Dropdown(
choices=list(LANG_CODES.keys()),
value="Tamil",
label="🌍 Select Language"
)
with gr.Column(scale=1):
gen_btn = gr.Button("🎲 Generate Practice Sentence", variant="primary")
intended_display = gr.Textbox(
label="📝 Practice Sentence (Read this aloud)",
placeholder="Click 'Generate Practice Sentence' to get started...",
interactive=False,
lines=2
)
with gr.Row():
audio_input = gr.Audio(
sources=["microphone", "upload"],
type="filepath",
label="🎤 Record Your Pronunciation"
)
analyze_btn = gr.Button("🔍 Analyze Pronunciation", variant="primary", size="lg")
status_output = gr.Textbox(label="📊 Analysis Status", interactive=False)
with gr.Row():
with gr.Column():
pass1_out = gr.Textbox(label="🎯 What You Actually Said", interactive=False)
wer_out = gr.Textbox(label="📈 Word Error Rate (lower = better)", interactive=False)
with gr.Column():
pass2_out = gr.Textbox(label="🔧 Target-Biased Output", interactive=False)
cer_out = gr.Textbox(label="📊 Character Error Rate (lower = better)", interactive=False)
hk_out = gr.Textbox(label="🔤 Romanization (Harvard-Kyoto)", interactive=False)
with gr.Accordion("📝 Detailed Feedback", open=True):
diff_html_box = gr.HTML(label="🔍 Word-Level Differences")
char_html_box = gr.HTML(label="🔤 Character-Level Analysis")
with gr.Row():
intended_tts_audio = gr.Audio(label="🔊 Reference Pronunciation", type="numpy")
actual_tts_audio = gr.Audio(label="🔊 Your Pronunciation (TTS)", type="numpy")
gr.Markdown("""
### 🎨 Color Guide:
- 🟢 **Green**: Correctly pronounced
- 🔴 **Red**: Missing or incorrect words
- 🟠 **Orange**: Extra or substituted words
- 🟡 **Yellow background**: Inserted characters
""")
# Event handlers
gen_btn.click(
fn=get_random_sentence,
inputs=[lang_choice],
outputs=[intended_display]
)
analyze_btn.click(
fn=compare_pronunciation,
inputs=[audio_input, lang_choice, intended_display],
outputs=[
status_output, pass1_out, pass2_out, hk_out,
wer_out, cer_out, diff_html_box,
intended_tts_audio, actual_tts_audio,
char_html_box, intended_display
]
)
# Auto-generate sentence on language change
lang_choice.change(
fn=get_random_sentence,
inputs=[lang_choice],
outputs=[intended_display]
)
return demo
# ---------------- LAUNCH ---------------- #
if __name__ == "__main__":
print("🚀 Starting AI4Bharat Pronunciation Trainer...")
# Pre-load English models for faster startup
print("📦 Pre-loading English models...")
try:
load_asr_model("English")
load_tts_model("English")
print("✅ English models loaded successfully")
except Exception as e:
print(f"⚠️ Warning: Could not pre-load English models: {e}")
demo = create_interface()
demo.launch(
share=True,
show_error=True,
server_name="0.0.0.0",
server_port=7860
) |