File size: 24,700 Bytes
f4d67a4
7a61446
455645c
024461f
 
12e638e
5a75be5
 
 
 
 
2175de9
 
5a75be5
 
 
48c3c18
 
5a75be5
 
f4d67a4
2911bf0
12e638e
2175de9
7a61446
f4d67a4
12e638e
5a75be5
9df7f33
f4d67a4
 
2175de9
5a75be5
 
2175de9
9df7f33
5a75be5
 
2175de9
 
 
 
9df7f33
5a75be5
 
48c3c18
5a75be5
 
 
 
 
9df7f33
48c3c18
f4d67a4
2911bf0
12e638e
5a75be5
2911bf0
 
 
7a61446
12e638e
5a75be5
 
 
 
2175de9
 
 
 
12e638e
 
 
5a75be5
 
 
2175de9
 
 
 
12e638e
 
 
 
5a75be5
 
2175de9
 
 
 
12e638e
7a61446
 
5a75be5
 
 
 
2175de9
5a75be5
 
 
2175de9
5a75be5
2175de9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a75be5
2175de9
 
5a75be5
2175de9
5a75be5
 
 
 
 
2911bf0
024461f
5a75be5
024461f
 
2911bf0
5a75be5
12e638e
2175de9
 
 
2911bf0
 
5a75be5
2911bf0
12e638e
5a75be5
12e638e
 
2911bf0
 
5a75be5
 
 
 
 
2175de9
 
5a75be5
 
 
 
 
 
 
 
 
 
2175de9
 
5a75be5
2175de9
5a75be5
 
2175de9
 
 
 
5a75be5
 
 
 
 
2175de9
 
5a75be5
2175de9
5a75be5
 
 
2175de9
5a75be5
 
 
 
2175de9
5a75be5
 
2175de9
 
 
 
 
 
 
 
 
5a75be5
 
 
386695f
2175de9
 
 
386695f
2175de9
 
 
386695f
 
2175de9
386695f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2175de9
386695f
 
 
 
 
 
 
 
2175de9
386695f
2175de9
5a75be5
 
2175de9
 
 
 
 
5a75be5
386695f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a75be5
 
 
386695f
2911bf0
455645c
2175de9
 
 
 
5a75be5
 
 
455645c
 
5a75be5
455645c
 
2175de9
455645c
2175de9
 
455645c
2175de9
455645c
2175de9
5a75be5
455645c
 
024461f
5a75be5
2175de9
 
 
024461f
 
5a75be5
024461f
 
2175de9
024461f
2175de9
024461f
2175de9
5a75be5
024461f
 
2175de9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a75be5
 
 
2175de9
9df7f33
2175de9
 
9df7f33
5a75be5
 
2175de9
5a75be5
 
 
2175de9
5a75be5
2175de9
5a75be5
2175de9
 
 
 
 
9df7f33
5a75be5
2175de9
5a75be5
 
 
2175de9
 
5a75be5
 
2175de9
 
 
9df7f33
 
 
 
 
2175de9
9df7f33
5a75be5
 
 
 
 
2175de9
 
5a75be5
 
 
2175de9
 
 
 
9df7f33
 
 
 
 
 
 
 
 
5a75be5
 
 
2175de9
 
9df7f33
2911bf0
 
5a75be5
663c2a0
2175de9
5a75be5
2175de9
 
 
5a75be5
2175de9
 
 
 
 
5a75be5
2175de9
 
 
 
 
5a75be5
 
 
2175de9
5a75be5
 
 
663c2a0
5a75be5
 
663c2a0
5a75be5
 
 
2175de9
5a75be5
663c2a0
5a75be5
 
2175de9
 
 
663c2a0
2175de9
5a75be5
663c2a0
5a75be5
2175de9
 
 
663c2a0
2175de9
5a75be5
 
 
2175de9
 
 
 
 
 
 
663c2a0
2175de9
5a75be5
 
2175de9
 
 
663c2a0
2175de9
9df7f33
 
663c2a0
2175de9
5a75be5
2175de9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a75be5
2175de9
 
 
 
 
5a75be5
 
2175de9
 
9df7f33
2175de9
5a75be5
2175de9
5a75be5
2175de9
 
9df7f33
 
 
2175de9
5a75be5
 
 
 
 
 
9df7f33
 
 
2175de9
5a75be5
 
 
 
 
 
 
 
 
2175de9
 
 
 
 
 
 
 
 
 
 
 
5a75be5
 
 
 
2911bf0
2175de9
 
 
5a75be5
2175de9
 
5a75be5
 
2175de9
5a75be5
2175de9
add3bb9
5a75be5
 
 
 
 
663c2a0
5a75be5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
import gradio as gr
import random
import difflib
import re
import jiwer
import torch
import torchaudio
import numpy as np
from transformers import (
    AutoProcessor, 
    AutoModelForSpeechSeq2Seq,
    WhisperProcessor,
    WhisperForConditionalGeneration
)
import librosa
import soundfile as sf
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
import warnings
warnings.filterwarnings("ignore")

# ---------------- CONFIG ---------------- #
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"🔧 Using device: {DEVICE}")

LANG_CODES = {
    "English": "en",
    "Tamil": "ta", 
    "Malayalam": "ml"
}

# Updated model configurations for better HF Spaces compatibility
ASR_MODELS = {
    "English": "openai/whisper-base.en",
    "Tamil": "vasista22/whisper-tamil-base",  # Community model for Tamil
    "Malayalam": "parambharat/whisper-small-ml"  # Community model for Malayalam
}

# Backup models in case primary ones fail
FALLBACK_MODELS = {
    "English": "openai/whisper-base.en",
    "Tamil": "openai/whisper-small",
    "Malayalam": "openai/whisper-small"
}

LANG_PRIMERS = {
    "English": ("Transcribe in English.",
                "Write only in English. Example: This is an English sentence."),
    "Tamil": ("தமிழில் எழுதுக.",
              "தமிழ் எழுத்துக்களில் மட்டும் எழுதவும். உதாரணம்: இது ஒரு தமிழ் வாக்கியம்."),
    "Malayalam": ("മലയാളത്തിൽ എഴുതുക.",
                  "മലയാള ലിപിയിൽ മാത്രം എഴുതുക. ഉദാഹരണം: ഇതൊരു മലയാള വാക്യമാണ്.")
}

SCRIPT_PATTERNS = {
    "Tamil": re.compile(r"[஀-௿]"),
    "Malayalam": re.compile(r"[ഀ-ൿ]"), 
    "English": re.compile(r"[A-Za-z]")
}

SENTENCE_BANK = {
    "English": [
        "The sun sets over the beautiful horizon.",
        "Learning new languages opens many doors.",
        "I enjoy reading books in the evening.",
        "Technology has changed our daily lives.",
        "Music brings people together across cultures.",
        "Education is the key to a bright future.",
        "The flowers bloom beautifully in spring.",
        "Hard work always pays off in the end."
    ],
    "Tamil": [
        "இன்று நல்ல வானிலை உள்ளது.",
        "நான் தமிழ் கற்றுக்கொண்டு இருக்கிறேன்.", 
        "எனக்கு புத்தகம் படிக்க விருப்பம்.",
        "தமிழ் மொழி மிகவும் அழகானது.",
        "குடும்பத்துடன் நேரம் செலவிடுவது முக்கியம்.",
        "கல்வி நமது எதிர்காலத்தின் திறவுகோல்.",
        "பறவைகள் காலையில் இனிமையாக பாடுகின்றன.",
        "உழைப்பு எப்போதும் வெற்றியைத் தரும்."
    ],
    "Malayalam": [
        "എനിക്ക് മലയാളം വളരെ ഇഷ്ടമാണ്.",
        "ഇന്ന് മഴപെയ്യുന്നു.",
        "ഞാൻ പുസ്തകം വായിക്കുന്നു.",
        "കേരളത്തിന്റെ പ്രകൃതി സുന്ദരമാണ്.",
        "വിദ്യാഭ്യാസം ജീവിതത്തിൽ പ്രധാനമാണ്.",
        "സംഗീതം മനസ്സിന് സന്തോഷം നൽകുന്നു.",
        "കുടുംബസമയം വളരെ വിലപ്പെട്ടതാണ്.",
        "കഠിനാധ്വാനം എപ്പോഴും ഫലം നൽകും."
    ]
}

# ---------------- MODEL CACHE ---------------- #
asr_models = {}

def load_asr_model(language):
    """Load ASR model for specific language with fallback"""
    if language not in asr_models:
        try:
            model_name = ASR_MODELS[language]
            print(f"🔄 Loading ASR model for {language}: {model_name}")
            
            # Try loading the primary model
            try:
                processor = AutoProcessor.from_pretrained(model_name)
                model = AutoModelForSpeechSeq2Seq.from_pretrained(
                    model_name,
                    torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
                    low_cpu_mem_usage=True,
                    use_safetensors=True
                ).to(DEVICE)
                
                asr_models[language] = {"processor": processor, "model": model, "model_name": model_name}
                print(f"✅ Primary ASR model loaded for {language}")
                return asr_models[language]
                
            except Exception as e:
                print(f"⚠️ Primary model failed for {language}: {e}")
                print(f"🔄 Trying fallback model...")
                
                # Try fallback model
                fallback_name = FALLBACK_MODELS[language]
                processor = WhisperProcessor.from_pretrained(fallback_name)
                model = WhisperForConditionalGeneration.from_pretrained(
                    fallback_name,
                    torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
                    low_cpu_mem_usage=True
                ).to(DEVICE)
                
                asr_models[language] = {"processor": processor, "model": model, "model_name": fallback_name}
                print(f"✅ Fallback ASR model loaded for {language}")
                
        except Exception as e:
            print(f"❌ Failed to load any ASR model for {language}: {e}")
            # Use English as ultimate fallback
            if language != "English":
                print(f"🔄 Using English ASR as final fallback for {language}")
                load_asr_model("English")
                asr_models[language] = asr_models["English"]
    
    return asr_models[language]

# ---------------- HELPERS ---------------- #
def get_random_sentence(language_choice):
    """Get random sentence for practice"""
    return random.choice(SENTENCE_BANK[language_choice])

def is_script(text, lang_name):
    """Check if text is in expected script"""
    pattern = SCRIPT_PATTERNS.get(lang_name)
    if not pattern:
        return True
    return bool(pattern.search(text))

def transliterate_to_hk(text, lang_choice):
    """Transliterate Indic text to Harvard-Kyoto"""
    mapping = {
        "Tamil": sanscript.TAMIL,
        "Malayalam": sanscript.MALAYALAM, 
        "Hindi": sanscript.DEVANAGARI,
        "Sanskrit": sanscript.DEVANAGARI,
        "English": None
    }
    
    script = mapping.get(lang_choice)
    if script and is_script(text, lang_choice):
        try:
            return transliterate(text, script, sanscript.HK)
        except Exception as e:
            print(f"Transliteration error: {e}")
            return text
    return text

def preprocess_audio(audio_path, target_sr=16000):
    """Preprocess audio for ASR"""
    try:
        # Load audio
        audio, sr = librosa.load(audio_path, sr=target_sr)
        
        # Normalize audio
        if np.max(np.abs(audio)) > 0:
            audio = audio / np.max(np.abs(audio))
        
        # Remove silence from beginning and end
        audio, _ = librosa.effects.trim(audio, top_db=20)
        
        # Ensure minimum length
        if len(audio) < target_sr * 0.1:  # Less than 0.1 seconds
            return None, None
            
        return audio, target_sr
    except Exception as e:
        print(f"Audio preprocessing error: {e}")
        return None, None

def transcribe_audio(audio_path, language, initial_prompt="", force_language=True):
    """Transcribe audio using loaded models"""
    try:
        # Load model components
        asr_components = load_asr_model(language)
        processor = asr_components["processor"]
        model = asr_components["model"]
        model_name = asr_components["model_name"]
        
        # Preprocess audio
        audio, sr = preprocess_audio(audio_path)
        if audio is None:
            return "Error: Audio too short or could not be processed"
        
        # Prepare inputs
        inputs = processor(
            audio, 
            sampling_rate=sr, 
            return_tensors="pt",
            padding=True
        )
        
        # Move to device
        input_features = inputs.input_features.to(DEVICE)
        
        # Generate transcription
        with torch.no_grad():
            # Basic generation parameters
            generate_kwargs = {
                "input_features": input_features,
                "max_length": 200,
                "num_beams": 3,  # Reduced for better compatibility
                "do_sample": False
            }
            
            # Try different approaches for language forcing
            if force_language and language != "English":
                lang_code = LANG_CODES.get(language, "en")
                
                # Method 1: Try forced_decoder_ids (OpenAI Whisper style)
                try:
                    if hasattr(processor, 'get_decoder_prompt_ids'):
                        forced_decoder_ids = processor.get_decoder_prompt_ids(
                            language=lang_code, 
                            task="transcribe"
                        )
                        # Test if model accepts this parameter
                        test_kwargs = generate_kwargs.copy()
                        test_kwargs["max_length"] = 10
                        test_kwargs["forced_decoder_ids"] = forced_decoder_ids
                        _ = model.generate(**test_kwargs)  # Test run
                        generate_kwargs["forced_decoder_ids"] = forced_decoder_ids
                        print(f"✅ Using forced_decoder_ids for {language}")
                except Exception as e:
                    print(f"⚠️ forced_decoder_ids not supported: {e}")
                
                # Method 2: Try language parameter
                try:
                    test_kwargs = generate_kwargs.copy()
                    test_kwargs["max_length"] = 10
                    test_kwargs["language"] = lang_code
                    _ = model.generate(**test_kwargs)  # Test run
                    generate_kwargs["language"] = lang_code
                    print(f"✅ Using language parameter for {language}")
                except Exception as e:
                    print(f"⚠️ language parameter not supported: {e}")
            
            # Generate with whatever parameters work
            predicted_ids = model.generate(**generate_kwargs)
        
        # Decode
        transcription = processor.batch_decode(
            predicted_ids, 
            skip_special_tokens=True,
            clean_up_tokenization_spaces=True
        )[0]
        
        # Post-process transcription
        transcription = transcription.strip()
        
        # If we get empty transcription, try again with simpler parameters
        if not transcription and generate_kwargs.get("num_beams", 1) > 1:
            print("🔄 Retrying with greedy decoding...")
            simple_kwargs = {
                "input_features": input_features,
                "max_length": 200,
                "do_sample": False
            }
            predicted_ids = model.generate(**simple_kwargs)
            transcription = processor.batch_decode(
                predicted_ids, 
                skip_special_tokens=True,
                clean_up_tokenization_spaces=True
            )[0].strip()
        
        return transcription or "(No transcription generated)"
        
    except Exception as e:
        print(f"Transcription error for {language}: {e}")
        return f"Error: {str(e)[:150]}..."

def highlight_differences(ref, hyp):
    """Highlight word-level differences with better styling"""
    if not ref.strip() or not hyp.strip():
        return "No text to compare"
        
    ref_words = ref.strip().split()
    hyp_words = hyp.strip().split()
    
    sm = difflib.SequenceMatcher(None, ref_words, hyp_words)
    out_html = []
    
    for tag, i1, i2, j1, j2 in sm.get_opcodes():
        if tag == 'equal':
            out_html.extend([f"<span style='color:green; font-weight:bold; background-color:#e8f5e8; padding:2px 4px; margin:1px; border-radius:3px;'>{w}</span>" for w in ref_words[i1:i2]])
        elif tag == 'replace':
            out_html.extend([f"<span style='color:red; text-decoration:line-through; background-color:#ffe8e8; padding:2px 4px; margin:1px; border-radius:3px;'>{w}</span>" for w in ref_words[i1:i2]])
            out_html.extend([f"<span style='color:orange; font-weight:bold; background-color:#fff3cd; padding:2px 4px; margin:1px; border-radius:3px;'>→{w}</span>" for w in hyp_words[j1:j2]])
        elif tag == 'delete':
            out_html.extend([f"<span style='color:red; text-decoration:line-through; background-color:#ffe8e8; padding:2px 4px; margin:1px; border-radius:3px;'>{w}</span>" for w in ref_words[i1:i2]])
        elif tag == 'insert':
            out_html.extend([f"<span style='color:orange; font-weight:bold; background-color:#fff3cd; padding:2px 4px; margin:1px; border-radius:3px;'>+{w}</span>" for w in hyp_words[j1:j2]])
    
    return " ".join(out_html)

def char_level_highlight(ref, hyp):
    """Highlight character-level differences"""
    if not ref.strip() or not hyp.strip():
        return "No text to compare"
        
    sm = difflib.SequenceMatcher(None, list(ref), list(hyp))
    out = []
    
    for tag, i1, i2, j1, j2 in sm.get_opcodes():
        if tag == 'equal':
            out.extend([f"<span style='color:green; background-color:#e8f5e8;'>{c}</span>" for c in ref[i1:i2]])
        elif tag in ('replace', 'delete'):
            out.extend([f"<span style='color:red; text-decoration:underline; background-color:#ffe8e8; font-weight:bold;'>{c}</span>" for c in ref[i1:i2]])
        elif tag == 'insert':
            out.extend([f"<span style='color:orange; background-color:#fff3cd; font-weight:bold;'>{c}</span>" for c in hyp[j1:j2]])
    
    return "".join(out)

def get_pronunciation_score(wer_val, cer_val):
    """Calculate pronunciation score and feedback"""
    # Weight WER more heavily than CER
    combined_score = (wer_val * 0.7) + (cer_val * 0.3)
    
    if combined_score <= 0.1:
        return "🏆 Excellent! (90%+)", "Your pronunciation is outstanding!"
    elif combined_score <= 0.2:
        return "🎉 Very Good! (80-90%)", "Great pronunciation with minor areas for improvement."
    elif combined_score <= 0.4:
        return "👍 Good! (60-80%)", "Good effort! Keep practicing for better accuracy."
    elif combined_score <= 0.6:
        return "📚 Needs Practice (40-60%)", "Focus on clearer pronunciation of highlighted words."
    else:
        return "💪 Keep Trying! (<40%)", "Don't give up! Practice makes perfect."

# ---------------- MAIN FUNCTION ---------------- #
def compare_pronunciation(audio, language_choice, intended_sentence):
    """Main function to compare pronunciation"""
    if audio is None:
        return ("❌ Please record audio first.", "", "", "", "", "", "", "", "", "", "", "", "")
    
    if not intended_sentence.strip():
        return ("❌ Please generate a practice sentence first.", "", "", "", "", "", "", "", "", "", "", "", "")
    
    try:
        print(f"🔍 Analyzing pronunciation for {language_choice}...")
        
        # Pass 1: Raw transcription
        primer_weak, _ = LANG_PRIMERS[language_choice]
        actual_text = transcribe_audio(audio, language_choice, primer_weak, force_language=True)
        
        # Pass 2: Target-biased transcription with stronger prompt
        _, primer_strong = LANG_PRIMERS[language_choice]
        strict_prompt = f"{primer_strong}\nExpected: {intended_sentence}"
        corrected_text = transcribe_audio(audio, language_choice, strict_prompt, force_language=True)
        
        # Handle transcription errors
        if actual_text.startswith("Error:"):
            return (f"❌ {actual_text}", "", "", "", "", "", "", "", "", "", "", "", "")
        
        # Calculate error metrics
        try:
            wer_val = jiwer.wer(intended_sentence, actual_text)
            cer_val = jiwer.cer(intended_sentence, actual_text)
        except Exception as e:
            print(f"Error calculating metrics: {e}")
            wer_val, cer_val = 1.0, 1.0
        
        # Get pronunciation score and feedback
        score_text, feedback = get_pronunciation_score(wer_val, cer_val)
        
        # Transliterations for both actual and intended
        actual_hk = transliterate_to_hk(actual_text, language_choice)
        target_hk = transliterate_to_hk(intended_sentence, language_choice)
        
        # Handle script mismatches
        if not is_script(actual_text, language_choice) and language_choice != "English":
            actual_hk = f"⚠️ Expected {language_choice} script, got mixed/other script"
        
        # Visual feedback
        diff_html = highlight_differences(intended_sentence, actual_text)
        char_html = char_level_highlight(intended_sentence, actual_text)
        
        # Status message with detailed feedback
        status = f"✅ Analysis Complete - {score_text}\n💬 {feedback}"
        
        return (
            status,
            actual_text or "(No transcription)",
            corrected_text or "(No corrected transcription)", 
            f"{wer_val:.3f} ({(1-wer_val)*100:.1f}% word accuracy)",
            f"{cer_val:.3f} ({(1-cer_val)*100:.1f}% character accuracy)",
            # New visual feedback outputs
            actual_text or "(No transcription)",  # actual_text_display
            actual_hk,  # actual_transliteration
            intended_sentence,  # target_text_display
            target_hk,  # target_transliteration
            diff_html,  # diff_html_box
            char_html,  # char_html_box
            intended_sentence,  # intended_display (unchanged)
            f"🎯 Target: {intended_sentence}"  # target_display
        )
        
    except Exception as e:
        error_msg = f"❌ Analysis Error: {str(e)[:200]}"
        print(f"Analysis error: {e}")
        return (error_msg, "", "", "", "", "", "", "", "", "", "", "", "")

# ---------------- UI ---------------- #
def create_interface():
    with gr.Blocks(title="🎙️ Multilingual Pronunciation Trainer") as demo:
        
        gr.Markdown("""
        # 🎙️ Multilingual Pronunciation Trainer
        
        **Practice pronunciation in Tamil, Malayalam, Hindi, Sanskrit & English** using advanced speech recognition!
        
        ### 📋 How to Use:
        1. **Select** your target language 🌍
        2. **Generate** a practice sentence 🎲  
        3. **Record** yourself reading it aloud 🎤
        4. **Get** detailed feedback with accuracy metrics 📊
        
        ### 🎯 Features:
        - **Dual-pass analysis** for accurate assessment
        - **Visual highlighting** of pronunciation errors
        - **Romanization** for Indic scripts
        - **Detailed metrics** (Word & Character accuracy)
        """)
        
        with gr.Row():
            with gr.Column(scale=3):
                lang_choice = gr.Dropdown(
                    choices=list(LANG_CODES.keys()), 
                    value="Tamil",
                    label="🌍 Select Language"
                )
            with gr.Column(scale=1):
                gen_btn = gr.Button("🎲 Generate Sentence", variant="primary")
        
        intended_display = gr.Textbox(
            label="📝 Practice Sentence (Read this aloud)",
            placeholder="Click 'Generate Sentence' to get started...",
            interactive=False,
            lines=3
        )
        
        audio_input = gr.Audio(
            sources=["microphone", "upload"], 
            type="filepath",
            label="🎤 Record Your Pronunciation"
        )
            
        analyze_btn = gr.Button("🔍 Analyze Pronunciation", variant="primary")
        
        status_output = gr.Textbox(
            label="📊 Analysis Results", 
            interactive=False,
            lines=3
        )
        
        with gr.Row():
            with gr.Column():
                pass1_out = gr.Textbox(
                    label="🎯 What You Actually Said (Raw Output)", 
                    interactive=False,
                    lines=2
                )
                wer_out = gr.Textbox(
                    label="📈 Word Accuracy", 
                    interactive=False
                )
                
            with gr.Column():
                pass2_out = gr.Textbox(
                    label="🔧 Target-Biased Analysis", 
                    interactive=False,
                    lines=2
                )
        cer_out = gr.Textbox(
            label="📊 Character Accuracy", 
            interactive=False
        )
        
        with gr.Accordion("📝 Detailed Visual Feedback", open=True):
            gr.Markdown("""
            ### 🎨 Color Guide:
            - 🟢 **Green**: Correctly pronounced words/characters
            - 🔴 **Red**: Missing or mispronounced (strikethrough)  
            - 🟠 **Orange**: Extra words or substitutions
            """)
            
            diff_html_box = gr.HTML(
                label="🔍 Word-Level Analysis",
                show_label=True
            )
            char_html_box = gr.HTML(
                label="🔤 Character-Level Analysis", 
                show_label=True
            )
        
        target_display = gr.Textbox(
            label="🎯 Reference Text",
            interactive=False,
            visible=False
        )
        
        # Event handlers
        def generate_and_clear(language):
            sentence = get_random_sentence(language)
            return sentence, "", "", "", "", "", "", "", "", "", "", "", ""
        
        gen_btn.click(
            fn=generate_and_clear,
            inputs=[lang_choice], 
            outputs=[
                intended_display, status_output, pass1_out, pass2_out, 
                wer_out, cer_out, actual_text_display, actual_transliteration,
                target_text_display, target_transliteration, diff_html_box, 
                char_html_box, target_display
            ]
        )
        
        analyze_btn.click(
            fn=compare_pronunciation,
            inputs=[audio_input, lang_choice, intended_display],
            outputs=[
                status_output, pass1_out, pass2_out, 
                wer_out, cer_out, actual_text_display, actual_transliteration,
                target_text_display, target_transliteration, diff_html_box, 
                char_html_box, intended_display, target_display
            ]
        )
        
        # Auto-generate sentence on language change
        lang_choice.change(
            fn=get_random_sentence,
            inputs=[lang_choice],
            outputs=[intended_display]
        )
        
        # Footer
        gr.Markdown("""
        ---
        ### 🔧 Technical Details:
        - **ASR Models**: Community-trained Whisper models optimized for Indic languages
        - **Metrics**: WER (Word Error Rate) and CER (Character Error Rate)
        - **Transliteration**: Harvard-Kyoto system for Indic scripts
        - **Analysis**: Dual-pass approach for comprehensive feedback
        
        **Note**: TTS (Text-to-Speech) reference audio will be added in future updates.
        """)
    
    return demo

# ---------------- LAUNCH ---------------- #
if __name__ == "__main__":
    print("🚀 Starting Multilingual Pronunciation Trainer...")
    print(f"🔧 Device: {DEVICE}")
    print(f"🔧 PyTorch version: {torch.__version__}")
    
    # Pre-load English model for faster startup
    print("📦 Pre-loading English model...")
    try:
        load_asr_model("English")
        print("✅ English model loaded successfully")
    except Exception as e:
        print(f"⚠️ Warning: Could not pre-load English model: {e}")

    demo = create_interface()
    demo.launch(
        share=True,
        show_error=True,
        server_name="0.0.0.0",
        server_port=7860
    )