Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,330 Bytes
f4d67a4 7a61446 455645c 024461f 12e638e 5a75be5 2175de9 5a75be5 48c3c18 5a75be5 f4d67a4 2911bf0 12e638e 2175de9 7a61446 f4d67a4 12e638e 5a75be5 9df7f33 f4d67a4 df1ff92 5a75be5 df1ff92 5a75be5 48c3c18 5a75be5 9df7f33 48c3c18 f4d67a4 2911bf0 12e638e 5a75be5 2911bf0 7a61446 12e638e 5a75be5 2175de9 12e638e 5a75be5 2175de9 12e638e 5a75be5 2175de9 12e638e 7a61446 5a75be5 df1ff92 5a75be5 df1ff92 5a75be5 df1ff92 5a75be5 df1ff92 5a75be5 2911bf0 024461f 5a75be5 024461f 2911bf0 5a75be5 12e638e 2175de9 2911bf0 5a75be5 2911bf0 12e638e 5b0a4d7 2911bf0 5a75be5 2175de9 5a75be5 2175de9 5a75be5 2175de9 5a75be5 2175de9 5a75be5 2175de9 5a75be5 2175de9 5a75be5 2175de9 5a75be5 2175de9 5a75be5 2175de9 5a75be5 386695f 2175de9 386695f 2175de9 386695f 2175de9 386695f 2175de9 386695f 2175de9 386695f 2175de9 5a75be5 2175de9 5a75be5 386695f 5a75be5 386695f 2911bf0 455645c 2175de9 5a75be5 455645c 5a75be5 455645c 2175de9 455645c 2175de9 455645c 2175de9 455645c 2175de9 5a75be5 455645c 024461f 5a75be5 2175de9 024461f 5a75be5 024461f 2175de9 024461f 2175de9 024461f 2175de9 5a75be5 024461f 2175de9 5a75be5 df1ff92 2175de9 df1ff92 9df7f33 2175de9 df1ff92 9df7f33 5a75be5 2175de9 5a75be5 df1ff92 5a75be5 2175de9 df1ff92 5a75be5 2175de9 df1ff92 5a75be5 2175de9 df1ff92 2175de9 df1ff92 9df7f33 5a75be5 2175de9 5a75be5 df1ff92 5a75be5 df1ff92 2175de9 df1ff92 5a75be5 2175de9 df1ff92 2175de9 9df7f33 df1ff92 9df7f33 2175de9 9df7f33 5a75be5 df1ff92 5a75be5 2175de9 df1ff92 5a75be5 2175de9 9df7f33 5a75be5 2175de9 df1ff92 2911bf0 5a75be5 663c2a0 2175de9 5a75be5 2175de9 5b0a4d7 5a75be5 2175de9 5a75be5 2175de9 5a75be5 2175de9 5a75be5 663c2a0 5a75be5 663c2a0 5a75be5 2175de9 5a75be5 663c2a0 5a75be5 2175de9 663c2a0 2175de9 5a75be5 663c2a0 5a75be5 2175de9 663c2a0 2175de9 5a75be5 2175de9 663c2a0 2175de9 5a75be5 2175de9 663c2a0 2175de9 9df7f33 663c2a0 2175de9 5a75be5 2175de9 5a75be5 2175de9 5a75be5 2175de9 df1ff92 2175de9 df1ff92 2175de9 5a75be5 2911bf0 df1ff92 2175de9 df1ff92 5b0a4d7 5a75be5 663c2a0 5a75be5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
import gradio as gr
import random
import difflib
import re
import jiwer
import torch
import torchaudio
import numpy as np
from transformers import (
AutoProcessor,
AutoModelForSpeechSeq2Seq,
WhisperProcessor,
WhisperForConditionalGeneration
)
import librosa
import soundfile as sf
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
import warnings
warnings.filterwarnings("ignore")
# ---------------- CONFIG ---------------- #
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"🔧 Using device: {DEVICE}")
LANG_CODES = {
"English": "en",
"Tamil": "ta",
"Malayalam": "ml"
}
# Updated model configurations with LARGE models for maximum accuracy
ASR_MODELS = {
"English": "openai/whisper-base.en",
"Tamil": "ai4bharat/whisper-large-ta", # LARGE AI4Bharat Tamil model (~1.5GB)
"Malayalam": "ai4bharat/whisper-large-ml" # LARGE AI4Bharat Malayalam model (~1.5GB)
}
LANG_PRIMERS = {
"English": ("Transcribe in English.",
"Write only in English. Example: This is an English sentence."),
"Tamil": ("தமிழில் எழுதுக.",
"தமிழ் எழுத்துக்களில் மட்டும் எழுதவும். உதாரணம்: இது ஒரு தமிழ் வாக்கியம்."),
"Malayalam": ("മലയാളത്തിൽ എഴുതുക.",
"മലയാള ലിപിയിൽ മാത്രം എഴുതുക. ഉദാഹരണം: ഇതൊരു മലയാള വാക്യമാണ്.")
}
SCRIPT_PATTERNS = {
"Tamil": re.compile(r"[-]"),
"Malayalam": re.compile(r"[ഀ-ൿ]"),
"English": re.compile(r"[A-Za-z]")
}
SENTENCE_BANK = {
"English": [
"The sun sets over the beautiful horizon.",
"Learning new languages opens many doors.",
"I enjoy reading books in the evening.",
"Technology has changed our daily lives.",
"Music brings people together across cultures.",
"Education is the key to a bright future.",
"The flowers bloom beautifully in spring.",
"Hard work always pays off in the end."
],
"Tamil": [
"இன்று நல்ல வானிலை உள்ளது.",
"நான் தமிழ் கற்றுக்கொண்டு இருக்கிறேன்.",
"எனக்கு புத்தகம் படிக்க விருப்பம்.",
"தமிழ் மொழி மிகவும் அழகானது.",
"குடும்பத்துடன் நேரம் செலவிடுவது முக்கியம்.",
"கல்வி நமது எதிர்காலத்தின் திறவுகோல்.",
"பறவைகள் காலையில் இனிமையாக பாடுகின்றன.",
"உழைப்பு எப்போதும் வெற்றியைத் தரும்."
],
"Malayalam": [
"എനിക്ക് മലയാളം വളരെ ഇഷ്ടമാണ്.",
"ഇന്ന് മഴപെയ്യുന്നു.",
"ഞാൻ പുസ്തകം വായിക്കുന്നു.",
"കേരളത്തിന്റെ പ്രകൃതി സുന്ദരമാണ്.",
"വിദ്യാഭ്യാസം ജീവിതത്തിൽ പ്രധാനമാണ്.",
"സംഗീതം മനസ്സിന് സന്തോഷം നൽകുന്നു.",
"കുടുംബസമയം വളരെ വിലപ്പെട്ടതാണ്.",
"കഠിനാധ്വാനം എപ്പോഴും ഫലം നൽകും."
]
}
# ---------------- MODEL CACHE ---------------- #
asr_models = {}
def load_asr_model(language):
"""Load ASR model for specific language - PRIMARY MODELS ONLY"""
if language not in asr_models:
model_name = ASR_MODELS[language]
print(f"🔄 Loading LARGE model for {language}: {model_name}")
try:
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_name,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
low_cpu_mem_usage=True,
use_safetensors=True
).to(DEVICE)
asr_models[language] = {"processor": processor, "model": model, "model_name": model_name}
print(f"✅ LARGE model loaded successfully for {language}")
except Exception as e:
print(f"❌ Failed to load {model_name}: {e}")
raise Exception(f"Could not load {language} model. Please check model availability.")
return asr_models[language]
# ---------------- HELPERS ---------------- #
def get_random_sentence(language_choice):
"""Get random sentence for practice"""
return random.choice(SENTENCE_BANK[language_choice])
def is_script(text, lang_name):
"""Check if text is in expected script"""
pattern = SCRIPT_PATTERNS.get(lang_name)
if not pattern:
return True
return bool(pattern.search(text))
def transliterate_to_hk(text, lang_choice):
"""Transliterate Indic text to Harvard-Kyoto"""
mapping = {
"Tamil": sanscript.TAMIL,
"Malayalam": sanscript.MALAYALAM,
"English": None
}
script = mapping.get(lang_choice)
if script and is_script(text, lang_choice):
try:
return transliterate(text, script, sanscript.HK)
except Exception as e:
print(f"Transliteration error: {e}")
return text
return text
def preprocess_audio(audio_path, target_sr=16000):
"""Preprocess audio for ASR"""
try:
# Load audio
audio, sr = librosa.load(audio_path, sr=target_sr)
# Normalize audio
if np.max(np.abs(audio)) > 0:
audio = audio / np.max(np.abs(audio))
# Remove silence from beginning and end
audio, _ = librosa.effects.trim(audio, top_db=20)
# Ensure minimum length
if len(audio) < target_sr * 0.1: # Less than 0.1 seconds
return None, None
return audio, target_sr
except Exception as e:
print(f"Audio preprocessing error: {e}")
return None, None
def transcribe_audio(audio_path, language, initial_prompt="", force_language=True):
"""Transcribe audio using loaded models"""
try:
# Load model components
asr_components = load_asr_model(language)
processor = asr_components["processor"]
model = asr_components["model"]
model_name = asr_components["model_name"]
# Preprocess audio
audio, sr = preprocess_audio(audio_path)
if audio is None:
return "Error: Audio too short or could not be processed"
# Prepare inputs
inputs = processor(
audio,
sampling_rate=sr,
return_tensors="pt",
padding=True
)
# Move to device
input_features = inputs.input_features.to(DEVICE)
# Generate transcription
with torch.no_grad():
# Basic generation parameters
generate_kwargs = {
"input_features": input_features,
"max_length": 200,
"num_beams": 3, # Reduced for better compatibility
"do_sample": False
}
# Try different approaches for language forcing
if force_language and language != "English":
lang_code = LANG_CODES.get(language, "en")
# Method 1: Try forced_decoder_ids (OpenAI Whisper style)
try:
if hasattr(processor, 'get_decoder_prompt_ids'):
forced_decoder_ids = processor.get_decoder_prompt_ids(
language=lang_code,
task="transcribe"
)
# Test if model accepts this parameter
test_kwargs = generate_kwargs.copy()
test_kwargs["max_length"] = 10
test_kwargs["forced_decoder_ids"] = forced_decoder_ids
_ = model.generate(**test_kwargs) # Test run
generate_kwargs["forced_decoder_ids"] = forced_decoder_ids
print(f"✅ Using forced_decoder_ids for {language}")
except Exception as e:
print(f"⚠️ forced_decoder_ids not supported: {e}")
# Method 2: Try language parameter
try:
test_kwargs = generate_kwargs.copy()
test_kwargs["max_length"] = 10
test_kwargs["language"] = lang_code
_ = model.generate(**test_kwargs) # Test run
generate_kwargs["language"] = lang_code
print(f"✅ Using language parameter for {language}")
except Exception as e:
print(f"⚠️ language parameter not supported: {e}")
# Generate with whatever parameters work
predicted_ids = model.generate(**generate_kwargs)
# Decode
transcription = processor.batch_decode(
predicted_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=True
)[0]
# Post-process transcription
transcription = transcription.strip()
# If we get empty transcription, try again with simpler parameters
if not transcription and generate_kwargs.get("num_beams", 1) > 1:
print("🔄 Retrying with greedy decoding...")
simple_kwargs = {
"input_features": input_features,
"max_length": 200,
"do_sample": False
}
predicted_ids = model.generate(**simple_kwargs)
transcription = processor.batch_decode(
predicted_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=True
)[0].strip()
return transcription or "(No transcription generated)"
except Exception as e:
print(f"Transcription error for {language}: {e}")
return f"Error: {str(e)[:150]}..."
def highlight_differences(ref, hyp):
"""Highlight word-level differences with better styling"""
if not ref.strip() or not hyp.strip():
return "No text to compare"
ref_words = ref.strip().split()
hyp_words = hyp.strip().split()
sm = difflib.SequenceMatcher(None, ref_words, hyp_words)
out_html = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == 'equal':
out_html.extend([f"<span style='color:green; font-weight:bold; background-color:#e8f5e8; padding:2px 4px; margin:1px; border-radius:3px;'>{w}</span>" for w in ref_words[i1:i2]])
elif tag == 'replace':
out_html.extend([f"<span style='color:red; text-decoration:line-through; background-color:#ffe8e8; padding:2px 4px; margin:1px; border-radius:3px;'>{w}</span>" for w in ref_words[i1:i2]])
out_html.extend([f"<span style='color:orange; font-weight:bold; background-color:#fff3cd; padding:2px 4px; margin:1px; border-radius:3px;'>→{w}</span>" for w in hyp_words[j1:j2]])
elif tag == 'delete':
out_html.extend([f"<span style='color:red; text-decoration:line-through; background-color:#ffe8e8; padding:2px 4px; margin:1px; border-radius:3px;'>{w}</span>" for w in ref_words[i1:i2]])
elif tag == 'insert':
out_html.extend([f"<span style='color:orange; font-weight:bold; background-color:#fff3cd; padding:2px 4px; margin:1px; border-radius:3px;'>+{w}</span>" for w in hyp_words[j1:j2]])
return " ".join(out_html)
def char_level_highlight(ref, hyp):
"""Highlight character-level differences"""
if not ref.strip() or not hyp.strip():
return "No text to compare"
sm = difflib.SequenceMatcher(None, list(ref), list(hyp))
out = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == 'equal':
out.extend([f"<span style='color:green; background-color:#e8f5e8;'>{c}</span>" for c in ref[i1:i2]])
elif tag in ('replace', 'delete'):
out.extend([f"<span style='color:red; text-decoration:underline; background-color:#ffe8e8; font-weight:bold;'>{c}</span>" for c in ref[i1:i2]])
elif tag == 'insert':
out.extend([f"<span style='color:orange; background-color:#fff3cd; font-weight:bold;'>{c}</span>" for c in hyp[j1:j2]])
return "".join(out)
def get_pronunciation_score(wer_val, cer_val):
"""Calculate pronunciation score and feedback"""
# Weight WER more heavily than CER
combined_score = (wer_val * 0.7) + (cer_val * 0.3)
if combined_score <= 0.1:
return "🏆 Excellent! (90%+)", "Your pronunciation is outstanding!"
elif combined_score <= 0.2:
return "🎉 Very Good! (80-90%)", "Great pronunciation with minor areas for improvement."
elif combined_score <= 0.4:
return "👍 Good! (60-80%)", "Good effort! Keep practicing for better accuracy."
elif combined_score <= 0.6:
return "📚 Needs Practice (40-60%)", "Focus on clearer pronunciation of highlighted words."
else:
return "💪 Keep Trying! (<40%)", "Don't give up! Practice makes perfect."
# ---------------- MAIN FUNCTION ---------------- #
def compare_pronunciation(audio, language_choice, intended_sentence):
"""Main function to compare pronunciation"""
print(f"🔍 Starting analysis with language: {language_choice}")
print(f"📝 Audio file: {audio}")
print(f"🎯 Intended sentence: {intended_sentence}")
if audio is None:
print("❌ No audio provided")
return ("❌ Please record audio first.", "", "", "", "", "", "", "", "", "", "", "", "")
if not intended_sentence.strip():
print("❌ No intended sentence")
return ("❌ Please generate a practice sentence first.", "", "", "", "", "", "", "", "", "", "", "", "")
try:
print(f"🔍 Analyzing pronunciation for {language_choice}...")
# Pass 1: Raw transcription
print("🔄 Starting Pass 1 transcription...")
primer_weak, _ = LANG_PRIMERS[language_choice]
actual_text = transcribe_audio(audio, language_choice, primer_weak, force_language=True)
print(f"✅ Pass 1 result: {actual_text}")
# Pass 2: Target-biased transcription with stronger prompt
print("🔄 Starting Pass 2 transcription...")
_, primer_strong = LANG_PRIMERS[language_choice]
strict_prompt = f"{primer_strong}\nExpected: {intended_sentence}"
corrected_text = transcribe_audio(audio, language_choice, strict_prompt, force_language=True)
print(f"✅ Pass 2 result: {corrected_text}")
# Handle transcription errors
if actual_text.startswith("Error:"):
print(f"❌ Transcription error: {actual_text}")
return (f"❌ {actual_text}", "", "", "", "", "", "", "", "", "", "", "", "")
# Calculate error metrics
try:
print("🔄 Calculating error metrics...")
wer_val = jiwer.wer(intended_sentence, actual_text)
cer_val = jiwer.cer(intended_sentence, actual_text)
print(f"✅ WER: {wer_val:.3f}, CER: {cer_val:.3f}")
except Exception as e:
print(f"❌ Error calculating metrics: {e}")
wer_val, cer_val = 1.0, 1.0
# Get pronunciation score and feedback
score_text, feedback = get_pronunciation_score(wer_val, cer_val)
print(f"✅ Score: {score_text}")
# Transliterations for both actual and intended
print("🔄 Generating transliterations...")
actual_hk = transliterate_to_hk(actual_text, language_choice)
target_hk = transliterate_to_hk(intended_sentence, language_choice)
# Handle script mismatches
if not is_script(actual_text, language_choice) and language_choice != "English":
actual_hk = f"⚠️ Expected {language_choice} script, got mixed/other script"
# Visual feedback
print("🔄 Generating visual feedback...")
diff_html = highlight_differences(intended_sentence, actual_text)
char_html = char_level_highlight(intended_sentence, actual_text)
# Status message with detailed feedback
status = f"✅ Analysis Complete - {score_text}\n💬 {feedback}"
print(f"✅ Analysis completed successfully")
return (
status,
actual_text or "(No transcription)",
corrected_text or "(No corrected transcription)",
f"{wer_val:.3f} ({(1-wer_val)*100:.1f}% word accuracy)",
f"{cer_val:.3f} ({(1-cer_val)*100:.1f}% character accuracy)",
# New visual feedback outputs
actual_text or "(No transcription)", # actual_text_display
actual_hk, # actual_transliteration
intended_sentence, # target_text_display
target_hk, # target_transliteration
diff_html, # diff_html_box
char_html, # char_html_box
intended_sentence, # intended_display (unchanged)
f"🎯 Target: {intended_sentence}" # target_display
)
except Exception as e:
error_msg = f"❌ Analysis Error: {str(e)[:200]}"
print(f"❌ FATAL ERROR: {e}")
import traceback
traceback.print_exc()
return (error_msg, str(e), "", "", "", "", "", "", "", "", "", "", "")
# ---------------- UI ---------------- #
def create_interface():
with gr.Blocks(title="🎙️ Multilingual Pronunciation Trainer") as demo:
gr.Markdown("""
# 🎙️ Multilingual Pronunciation Trainer
**Practice pronunciation in Tamil, Malayalam & English** using advanced speech recognition!
### 📋 How to Use:
1. **Select** your target language 🌍
2. **Generate** a practice sentence 🎲
3. **Record** yourself reading it aloud 🎤
4. **Get** detailed feedback with accuracy metrics 📊
### 🎯 Features:
- **Dual-pass analysis** for accurate assessment
- **Visual highlighting** of pronunciation errors
- **Romanization** for Indic scripts
- **Detailed metrics** (Word & Character accuracy)
""")
with gr.Row():
with gr.Column(scale=3):
lang_choice = gr.Dropdown(
choices=list(LANG_CODES.keys()),
value="Tamil",
label="🌍 Select Language"
)
with gr.Column(scale=1):
gen_btn = gr.Button("🎲 Generate Sentence", variant="primary")
intended_display = gr.Textbox(
label="📝 Practice Sentence (Read this aloud)",
placeholder="Click 'Generate Sentence' to get started...",
interactive=False,
lines=3
)
audio_input = gr.Audio(
sources=["microphone", "upload"],
type="filepath",
label="🎤 Record Your Pronunciation"
)
analyze_btn = gr.Button("🔍 Analyze Pronunciation", variant="primary")
status_output = gr.Textbox(
label="📊 Analysis Results",
interactive=False,
lines=3
)
with gr.Row():
with gr.Column():
pass1_out = gr.Textbox(
label="🎯 What You Actually Said (Raw Output)",
interactive=False,
lines=2
)
wer_out = gr.Textbox(
label="📈 Word Accuracy",
interactive=False
)
with gr.Column():
pass2_out = gr.Textbox(
label="🔧 Target-Biased Analysis",
interactive=False,
lines=2
)
cer_out = gr.Textbox(
label="📊 Character Accuracy",
interactive=False
)
with gr.Accordion("📝 Detailed Visual Feedback", open=True):
gr.Markdown("""
### 🎨 Color Guide:
- 🟢 **Green**: Correctly pronounced words/characters
- 🔴 **Red**: Missing or mispronounced (strikethrough)
- 🟠 **Orange**: Extra words or substitutions
""")
diff_html_box = gr.HTML(
label="🔍 Word-Level Analysis",
show_label=True
)
char_html_box = gr.HTML(
label="🔤 Character-Level Analysis",
show_label=True
)
target_display = gr.Textbox(
label="🎯 Reference Text",
interactive=False,
visible=False
)
# Auto-generate sentence on language change
lang_choice.change(
fn=get_random_sentence,
inputs=[lang_choice],
outputs=[intended_display]
)
# Footer
gr.Markdown("""
---
### 🔧 Technical Details:
- **ASR Models**:
- **Tamil**: AI4Bharat Whisper-LARGE-TA (~1.5GB, maximum accuracy)
- **Malayalam**: AI4Bharat Whisper-LARGE-ML (~1.5GB, maximum accuracy)
- **English**: OpenAI Whisper-Base-EN (optimized for English)
- **Performance**: Using largest available models for best pronunciation assessment
- **Metrics**: WER (Word Error Rate) and CER (Character Error Rate)
- **Transliteration**: Harvard-Kyoto system for Indic scripts
- **Analysis**: Dual-pass approach for comprehensive feedback
**Note**: Large models provide maximum accuracy but require longer initial loading time.
**Languages**: English, Tamil, and Malayalam with specialized large models.
""")
return demo
# ---------------- LAUNCH ---------------- #
if __name__ == "__main__":
print("🚀 Starting Multilingual Pronunciation Trainer with LARGE models...")
print(f"🔧 Device: {DEVICE}")
print(f"🔧 PyTorch version: {torch.__version__}")
print("📦 Models will be loaded on-demand for best performance...")
print("⚡ Using AI4Bharat LARGE models for maximum accuracy!")
demo = create_interface()
demo.launch(
share=True,
show_error=True,
server_name="0.0.0.0",
server_port=7860
) |