Spaces:
Sleeping
Sleeping
File size: 11,802 Bytes
f4d67a4 7a61446 455645c 024461f 12e638e f4d67a4 48c3c18 12e638e f4d67a4 2911bf0 48c3c18 12e638e 7a61446 f4d67a4 12e638e f4d67a4 48c3c18 024461f 12e638e 024461f 48c3c18 f4d67a4 2911bf0 12e638e 2911bf0 7a61446 12e638e 7a61446 024461f 2911bf0 024461f 12e638e 2911bf0 024461f 2911bf0 12e638e 2911bf0 12e638e 2911bf0 455645c 48c3c18 2911bf0 024461f 12e638e 2911bf0 48c3c18 2911bf0 455645c 024461f 455645c 024461f 12e638e 024461f 12e638e 7a61446 12e638e 48c3c18 12e638e 024461f 2911bf0 12e638e 7a61446 024461f f4d67a4 12e638e 7a61446 2911bf0 12e638e 455645c 12e638e 455645c 024461f 12e638e 024461f 2911bf0 12e638e 2911bf0 f4d67a4 12e638e 7a61446 024461f 48c3c18 2911bf0 455645c 48c3c18 7a61446 024461f 7a61446 024461f 455645c 7a61446 48c3c18 7a61446 12e638e 2911bf0 7a61446 455645c 024461f 48c3c18 f4d67a4 2911bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import gradio as gr
import random
import difflib
import re
import jiwer
import torch
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer
from faster_whisper import WhisperModel
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
import soundfile as sf
# ---------------- CONFIG ---------------- #
MODEL_NAME = "large-v2"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
LANG_CODES = {
"English": "en",
"Tamil": "ta",
"Malayalam": "ml",
"Hindi": "hi",
"Sanskrit": "sa"
}
LANG_PRIMERS = {
"English": ("The transcript should be in English only.",
"Write only in English without translation. Example: This is an English sentence."),
"Tamil": ("நகல் தமிழ் எழுத்துக்களில் மட்டும் இருக்க வேண்டும்.",
"தமிழ் எழுத்துக்களில் மட்டும் எழுதவும், மொழிபெயர்ப்பு செய்யக்கூடாது. உதாரணம்: இது ஒரு தமிழ் வாக்கியம்."),
"Malayalam": ("ട്രാൻസ്ഖ്രിപ്റ്റ് മലയാള ലിപിയിൽ ആയിരിക്കണം.",
"മലയാള ലിപിയിൽ മാത്രം എഴുതുക, വിവർത്തനം ചെയ്യരുത്. ഉദാഹരണം: ഇതൊരു മലയാള വാക്യമാണ്. എനിക്ക് മലയാളം അറിയാം."),
"Hindi": ("प्रतिलिपि केवल देवनागरी लिपि में होनी चाहिए।",
"केवल देवनागरी लिपि में लिखें, अनुवाद न करें। उदाहरण: यह एक हिंदी वाक्य है।"),
"Sanskrit": ("प्रतिलिपि केवल देवनागरी लिपि में होनी चाहिए।",
"केवल देवनागरी लिपि में लिखें, अनुवाद न करें। उदाहरण: अहं संस्कृतं जानामि।")
}
SCRIPT_PATTERNS = {
"Tamil": re.compile(r"[-]"),
"Malayalam": re.compile(r"[ഀ-ൿ]"),
"Hindi": re.compile(r"[ऀ-ॿ]"),
"Sanskrit": re.compile(r"[ऀ-ॿ]"),
"English": re.compile(r"[A-Za-z]")
}
SENTENCE_BANK = {
"English": [
"The sun sets over the horizon.",
"Learning languages is fun.",
"I like to drink coffee in the morning."
],
"Tamil": [
"இன்று நல்ல வானிலை உள்ளது.",
"நான் தமிழ் கற்றுக்கொண்டு இருக்கிறேன்.",
"எனக்கு புத்தகம் படிக்க விருப்பம்."
],
"Malayalam": [
"എനിക്ക് മലയാളം വളരെ ഇഷ്ടമാണ്.",
"ഇന്ന് മഴപെയ്യുന്നു.",
"ഞാൻ പുസ്തകം വായിക്കുന്നു."
],
"Hindi": [
"आज मौसम अच्छा है।",
"मुझे हिंदी बोलना पसंद है।",
"मैं किताब पढ़ रहा हूँ।"
],
"Sanskrit": [
"अहं ग्रन्थं पठामि।",
"अद्य सूर्यः तेजस्वी अस्ति।",
"मम नाम रामः।"
]
}
VOICE_STYLE = {
"English": "An English female voice with a neutral Indian accent.",
"Tamil": "A female speaker with a clear Tamil accent.",
"Malayalam": "A female speaker with a clear Malayali accent.",
"Hindi": "A female speaker with a neutral Hindi accent.",
"Sanskrit": "A female speaker reading in classical Sanskrit style."
}
# ---------------- LOAD MODELS ---------------- #
print("Loading Whisper model...")
whisper_model = WhisperModel(MODEL_NAME, device=DEVICE)
print("Loading Parler-TTS model...")
parler_model_id = "parler-tts/parler-tts-mini-v1" # You may switch to larger models if desired
parler_tts_model = ParlerTTSForConditionalGeneration.from_pretrained(parler_model_id).to(DEVICE)
parler_tts_tokenizer = AutoTokenizer.from_pretrained(parler_model_id)
# ---------------- HELPERS ---------------- #
def get_random_sentence(language_choice):
return random.choice(SENTENCE_BANK[language_choice])
def is_script(text, lang_name):
pattern = SCRIPT_PATTERNS.get(lang_name)
return bool(pattern.search(text)) if pattern else True
def transliterate_to_hk(text, lang_choice):
mapping = {
"Tamil": sanscript.TAMIL,
"Malayalam": sanscript.MALAYALAM,
"Hindi": sanscript.DEVANAGARI,
"Sanskrit": sanscript.DEVANAGARI,
"English": None
}
return transliterate(text, mapping[lang_choice], sanscript.HK) if mapping[lang_choice] else text
def transcribe_once(audio_path, lang_code, initial_prompt, beam_size, temperature, condition_on_previous_text):
segments, _ = whisper_model.transcribe(
audio_path,
language=lang_code,
task="transcribe",
initial_prompt=initial_prompt,
beam_size=beam_size,
temperature=temperature,
condition_on_previous_text=condition_on_previous_text,
word_timestamps=False
)
return "".join(s.text for s in segments).strip()
def highlight_differences(ref, hyp):
ref_words, hyp_words = ref.strip().split(), hyp.strip().split()
sm = difflib.SequenceMatcher(None, ref_words, hyp_words)
out_html = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == 'equal':
out_html.extend([f"<span style='color:green'>{w}</span>" for w in ref_words[i1:i2]])
elif tag == 'replace':
out_html.extend([f"<span style='color:red'>{w}</span>" for w in ref_words[i1:i2]])
out_html.extend([f"<span style='color:orange'>{w}</span>" for w in hyp_words[j1:j2]])
elif tag == 'delete':
out_html.extend([f"<span style='color:red;text-decoration:line-through'>{w}</span>" for w in ref_words[i1:i2]])
elif tag == 'insert':
out_html.extend([f"<span style='color:orange'>{w}</span>" for w in hyp_words[j1:j2]])
return " ".join(out_html)
def char_level_highlight(ref, hyp):
sm = difflib.SequenceMatcher(None, list(ref), list(hyp))
out = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == 'equal':
out.extend([f"<span style='color:green'>{c}</span>" for c in ref[i1:i2]])
elif tag in ('replace', 'delete'):
out.extend([f"<span style='color:red;text-decoration:underline'>{c}</span>" for c in ref[i1:i2]])
elif tag == 'insert':
out.extend([f"<span style='color:orange'>{c}</span>" for c in hyp[j1:j2]])
return "".join(out)
def synthesize_tts(text, lang_choice):
if not text.strip():
return None
description = VOICE_STYLE.get(lang_choice, "")
description_input = parler_tts_tokenizer(description, return_tensors='pt').to(DEVICE)
prompt_input = parler_tts_tokenizer(text, return_tensors='pt').to(DEVICE)
generation = parler_tts_model.generate(
input_ids=description_input.input_ids,
attention_mask=description_input.attention_mask,
prompt_input_ids=prompt_input.input_ids,
prompt_attention_mask=prompt_input.attention_mask
)
audio_arr = generation.cpu().numpy().squeeze()
# Parler-TTS default sample rate is 24000
return 24000, audio_arr
# ---------------- MAIN ---------------- #
def compare_pronunciation(audio, language_choice, intended_sentence,
pass1_beam, pass1_temp, pass1_condition):
if audio is None or not intended_sentence.strip():
return ("No audio or intended sentence.", "", "", "", "", "",
None, None, "", "")
lang_code = LANG_CODES[language_choice]
primer_weak, primer_strong = LANG_PRIMERS[language_choice]
# Pass 1: raw transcription with user-configured decoding parameters
actual_text = transcribe_once(audio, lang_code, primer_weak,
pass1_beam, pass1_temp, pass1_condition)
# Pass 2: strict transcription biased by intended sentence (fixed decoding params)
strict_prompt = f"{primer_strong}\nTarget: {intended_sentence}"
corrected_text = transcribe_once(audio, lang_code, strict_prompt,
beam_size=5, temperature=0.0, condition_on_previous_text=False)
# Compute WER and CER
wer_val = jiwer.wer(intended_sentence, actual_text)
cer_val = jiwer.cer(intended_sentence, actual_text)
# Transliteration of Pass 1 output
hk_translit = transliterate_to_hk(actual_text, language_choice) if is_script(actual_text, language_choice) else f"[Script mismatch: expected {language_choice}]"
# Highlight word-level and character-level differences
diff_html = highlight_differences(intended_sentence, actual_text)
char_html = char_level_highlight(intended_sentence, actual_text)
# Synthesized TTS audios for intended and Pass 1 text
tts_intended = synthesize_tts(intended_sentence, language_choice)
tts_pass1 = synthesize_tts(actual_text, language_choice)
return (actual_text, corrected_text, hk_translit, f"{wer_val:.2f}", f"{cer_val:.2f}",
diff_html, tts_intended, tts_pass1, char_html, intended_sentence)
# ---------------- UI ---------------- #
with gr.Blocks() as demo:
gr.Markdown("## 🎙 Pronunciation Comparator + Parler-TTS + Highlights")
with gr.Row():
lang_choice = gr.Dropdown(choices=list(LANG_CODES.keys()), value="Malayalam", label="Language")
gen_btn = gr.Button("🎲 Generate Sentence")
intended_display = gr.Textbox(label="Generated Sentence (Read aloud)", interactive=False)
with gr.Row():
audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath")
pass1_beam = gr.Slider(1, 10, value=8, step=1, label="Pass 1 Beam Size")
pass1_temp = gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="Pass 1 Temperature")
pass1_condition = gr.Checkbox(value=True, label="Pass 1: Condition on previous text")
with gr.Row():
pass1_out = gr.Textbox(label="Pass 1: What You Actually Said")
pass2_out = gr.Textbox(label="Pass 2: Target-Biased Output")
hk_out = gr.Textbox(label="Harvard-Kyoto Transliteration (Pass 1)")
with gr.Row():
wer_out = gr.Textbox(label="Word Error Rate")
cer_out = gr.Textbox(label="Character Error Rate")
diff_html_box = gr.HTML(label="Word Differences Highlighted")
char_html_box = gr.HTML(label="Character-Level Highlighting (mispronounced = red underline)")
with gr.Row():
intended_tts_audio = gr.Audio(label="TTS - Intended Sentence", type="numpy")
pass1_tts_audio = gr.Audio(label="TTS - Pass1 Output", type="numpy")
gen_btn.click(fn=get_random_sentence, inputs=[lang_choice], outputs=[intended_display])
submit_btn = gr.Button("Analyze Pronunciation")
submit_btn.click(
fn=compare_pronunciation,
inputs=[audio_input, lang_choice, intended_display, pass1_beam, pass1_temp, pass1_condition],
outputs=[
pass1_out, pass2_out, hk_out, wer_out, cer_out,
diff_html_box, intended_tts_audio, pass1_tts_audio,
char_html_box, intended_display
]
)
if __name__ == "__main__":
demo.launch()
|