sudhanm's picture
Update app.py
89f17cd verified
raw
history blame
25.5 kB
import gradio as gr
import random
import difflib
import re
import jiwer
import torch
import numpy as np
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
import librosa
import soundfile as sf
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
import warnings
import spaces
warnings.filterwarnings("ignore")
# Try to import whisper_jax, fallback to transformers if not available
try:
from whisper_jax import FlaxWhisperPipeline
import jax.numpy as jnp
WHISPER_JAX_AVAILABLE = True
print("🚀 Using JAX-optimized IndicWhisper (70x faster!)")
except ImportError:
WHISPER_JAX_AVAILABLE = False
print("⚠️ whisper_jax not available, using transformers fallback")
# ---------------- CONFIG ---------------- #
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"🔧 Using device: {DEVICE}")
LANG_CODES = {
"English": "en",
"Tamil": "ta",
"Malayalam": "ml"
}
# SOTA IndicWhisper model - one model for all languages!
INDICWHISPER_MODEL = "parthiv11/indic_whisper_nodcil"
# Fallback models if IndicWhisper fails
FALLBACK_MODELS = {
"English": "openai/whisper-base.en",
"Tamil": "vasista22/whisper-tamil-large-v2",
"Malayalam": "thennal/whisper-medium-ml"
}
LANG_PRIMERS = {
"English": ("Transcribe in English.",
"Write only in English. Example: This is an English sentence."),
"Tamil": ("தமிழில் எழுதுக.",
"தமிழ் எழுத்துக்களில் மட்டும் எழுதவும். உதாரணம்: இது ஒரு தமிழ் வாக்கியம்."),
"Malayalam": ("മലയാളത്തിൽ എഴുതുക.",
"മലയാള ലിപിയിൽ മാത്രം എഴുതുക. ഉദാഹരണം: ഇതൊരു മലയാള വാക്യമാണ്.")
}
SCRIPT_PATTERNS = {
"Tamil": re.compile(r"[஀-௿]"),
"Malayalam": re.compile(r"[ഀ-ൿ]"),
"English": re.compile(r"[A-Za-z]")
}
SENTENCE_BANK = {
"English": [
"The sun sets over the beautiful horizon.",
"Learning new languages opens many doors.",
"I enjoy reading books in the evening.",
"Technology has changed our daily lives.",
"Music brings people together across cultures.",
"Education is the key to a bright future.",
"The flowers bloom beautifully in spring.",
"Hard work always pays off in the end."
],
"Tamil": [
"இன்று நல்ல வானிலை உள்ளது.",
"நான் தமிழ் கற்றுக்கொண்டு இருக்கிறேன்.",
"எனக்கு புத்தகம் படிக்க விருப்பம்.",
"தமிழ் மொழி மிகவும் அழகானது.",
"குடும்பத்துடன் நேரம் செலவிடுவது முக்கியம்.",
"கல்வி நமது எதிர்காலத்தின் திறவுகோல்.",
"பறவைகள் காலையில் இனிமையாக பாடுகின்றன.",
"உழைப்பு எப்போதும் வெற்றியைத் தரும்."
],
"Malayalam": [
"എനിക്ക് മലയാളം വളരെ ഇഷ്ടമാണ്.",
"ഇന്ന് മഴപെയ്യുന്നു.",
"ഞാൻ പുസ്തകം വായിക്കുന്നു.",
"കേരളത്തിന്റെ പ്രകൃതി സുന്ദരമാണ്.",
"വിദ്യാഭ്യാസം ജീവിതത്തിൽ പ്രധാനമാണ്.",
"സംഗീതം മനസ്സിന് സന്തോഷം നൽകുന്നു.",
"കുടുംബസമയം വളരെ വിലപ്പെട്ടതാണ്.",
"കഠിനാധ്വാനം എപ്പോഴും ഫലം നൽകും."
]
}
# ---------------- MODEL CACHE ---------------- #
indicwhisper_pipeline = None
fallback_models = {}
@spaces.GPU
def load_indicwhisper():
"""Load the SOTA IndicWhisper model"""
global indicwhisper_pipeline
if indicwhisper_pipeline is None:
try:
print(f"🔄 Loading SOTA IndicWhisper: {INDICWHISPER_MODEL}")
if WHISPER_JAX_AVAILABLE:
# Use JAX-optimized version (70x faster!)
indicwhisper_pipeline = FlaxWhisperPipeline(
INDICWHISPER_MODEL,
dtype=jnp.bfloat16,
batch_size=1
)
print("✅ IndicWhisper loaded with JAX optimization (70x faster!)")
else:
# Fallback to transformers if whisper_jax not available
from transformers import pipeline
indicwhisper_pipeline = pipeline(
"automatic-speech-recognition",
model=INDICWHISPER_MODEL,
device=DEVICE if DEVICE == "cuda" else -1
)
print("✅ IndicWhisper loaded with transformers (fallback mode)")
except Exception as e:
print(f"❌ Failed to load IndicWhisper: {e}")
indicwhisper_pipeline = None
raise Exception(f"Could not load IndicWhisper model: {str(e)}")
return indicwhisper_pipeline
@spaces.GPU
def load_fallback_model(language):
"""Load fallback model if IndicWhisper fails"""
if language not in fallback_models:
model_name = FALLBACK_MODELS[language]
print(f"🔄 Loading fallback model for {language}: {model_name}")
try:
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_name,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
low_cpu_mem_usage=True,
use_safetensors=True
).to(DEVICE)
fallback_models[language] = {"processor": processor, "model": model, "model_name": model_name}
print(f"✅ Fallback model loaded for {language}")
except Exception as e:
print(f"❌ Failed to load fallback {model_name}: {e}")
raise Exception(f"Could not load fallback {language} model")
return fallback_models[language]
# ---------------- HELPERS ---------------- #
def get_random_sentence(language_choice):
"""Get random sentence for practice"""
return random.choice(SENTENCE_BANK[language_choice])
def is_script(text, lang_name):
"""Check if text is in expected script"""
pattern = SCRIPT_PATTERNS.get(lang_name)
if not pattern:
return True
return bool(pattern.search(text))
def transliterate_to_hk(text, lang_choice):
"""Transliterate Indic text to Harvard-Kyoto"""
mapping = {
"Tamil": sanscript.TAMIL,
"Malayalam": sanscript.MALAYALAM,
"English": None
}
script = mapping.get(lang_choice)
if script and is_script(text, lang_choice):
try:
return transliterate(text, script, sanscript.HK)
except Exception as e:
print(f"Transliteration error: {e}")
return text
return text
def preprocess_audio(audio_path, target_sr=16000):
"""Preprocess audio for ASR"""
try:
# Load audio
audio, sr = librosa.load(audio_path, sr=target_sr)
# Normalize audio
if np.max(np.abs(audio)) > 0:
audio = audio / np.max(np.abs(audio))
# Remove silence from beginning and end
audio, _ = librosa.effects.trim(audio, top_db=20)
# Ensure minimum length
if len(audio) < target_sr * 0.1: # Less than 0.1 seconds
return None, None
return audio, target_sr
except Exception as e:
print(f"Audio preprocessing error: {e}")
return None, None
@spaces.GPU
def transcribe_with_indicwhisper(audio_path, language):
"""Transcribe using SOTA IndicWhisper"""
try:
pipeline = load_indicwhisper()
if WHISPER_JAX_AVAILABLE and hasattr(pipeline, '__call__'):
# JAX-optimized version
result = pipeline(audio_path)
if isinstance(result, dict) and 'text' in result:
return result['text'].strip()
elif isinstance(result, str):
return result.strip()
else:
return str(result).strip()
else:
# Transformers fallback
result = pipeline(audio_path)
return result.get('text', '').strip()
except Exception as e:
print(f"IndicWhisper transcription error: {e}")
raise e
@spaces.GPU
def transcribe_with_fallback(audio_path, language):
"""Transcribe using fallback models"""
try:
components = load_fallback_model(language)
processor = components["processor"]
model = components["model"]
# Preprocess audio
audio, sr = preprocess_audio(audio_path)
if audio is None:
return "Error: Audio too short or could not be processed"
# Prepare inputs
inputs = processor(
audio,
sampling_rate=sr,
return_tensors="pt",
padding=True
)
# Move to device
input_features = inputs.input_features.to(DEVICE)
# Generate transcription
with torch.no_grad():
generate_kwargs = {
"input_features": input_features,
"max_length": 200,
"num_beams": 3,
"do_sample": False
}
# Language forcing for non-English
if language != "English":
lang_code = LANG_CODES.get(language, "en")
try:
if hasattr(processor, 'get_decoder_prompt_ids'):
forced_decoder_ids = processor.get_decoder_prompt_ids(
language=lang_code,
task="transcribe"
)
generate_kwargs["forced_decoder_ids"] = forced_decoder_ids
except Exception as e:
print(f"⚠️ Language forcing failed: {e}")
predicted_ids = model.generate(**generate_kwargs)
# Decode
transcription = processor.batch_decode(
predicted_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=True
)[0]
return transcription.strip() or "(No transcription generated)"
except Exception as e:
print(f"Fallback transcription error: {e}")
return f"Error: {str(e)[:150]}..."
@spaces.GPU
def transcribe_audio(audio_path, language, initial_prompt="", use_fallback=False):
"""Main transcription function with IndicWhisper + fallback"""
try:
if use_fallback:
print(f"🔄 Using fallback model for {language}")
return transcribe_with_fallback(audio_path, language)
else:
print(f"🔄 Using SOTA IndicWhisper for {language}")
return transcribe_with_indicwhisper(audio_path, language)
except Exception as e:
print(f"Transcription failed, trying fallback: {e}")
if not use_fallback:
# Retry with fallback
return transcribe_audio(audio_path, language, initial_prompt, use_fallback=True)
else:
return f"Error: All transcription methods failed - {str(e)[:100]}"
def highlight_differences(ref, hyp):
"""Highlight word-level differences with better styling"""
if not ref.strip() or not hyp.strip():
return "No text to compare"
ref_words = ref.strip().split()
hyp_words = hyp.strip().split()
sm = difflib.SequenceMatcher(None, ref_words, hyp_words)
out_html = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == 'equal':
out_html.extend([f"<span style='color:green; font-weight:bold; background-color:#e8f5e8; padding:2px 4px; margin:1px; border-radius:3px;'>{w}</span>" for w in ref_words[i1:i2]])
elif tag == 'replace':
out_html.extend([f"<span style='color:red; text-decoration:line-through; background-color:#ffe8e8; padding:2px 4px; margin:1px; border-radius:3px;'>{w}</span>" for w in ref_words[i1:i2]])
out_html.extend([f"<span style='color:orange; font-weight:bold; background-color:#fff3cd; padding:2px 4px; margin:1px; border-radius:3px;'>→{w}</span>" for w in hyp_words[j1:j2]])
elif tag == 'delete':
out_html.extend([f"<span style='color:red; text-decoration:line-through; background-color:#ffe8e8; padding:2px 4px; margin:1px; border-radius:3px;'>{w}</span>" for w in ref_words[i1:i2]])
elif tag == 'insert':
out_html.extend([f"<span style='color:orange; font-weight:bold; background-color:#fff3cd; padding:2px 4px; margin:1px; border-radius:3px;'>+{w}</span>" for w in hyp_words[j1:j2]])
return " ".join(out_html)
def char_level_highlight(ref, hyp):
"""Highlight character-level differences"""
if not ref.strip() or not hyp.strip():
return "No text to compare"
sm = difflib.SequenceMatcher(None, list(ref), list(hyp))
out = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == 'equal':
out.extend([f"<span style='color:green; background-color:#e8f5e8;'>{c}</span>" for c in ref[i1:i2]])
elif tag in ('replace', 'delete'):
out.extend([f"<span style='color:red; text-decoration:underline; background-color:#ffe8e8; font-weight:bold;'>{c}</span>" for c in ref[i1:i2]])
elif tag == 'insert':
out.extend([f"<span style='color:orange; background-color:#fff3cd; font-weight:bold;'>{c}</span>" for c in hyp[j1:j2]])
return "".join(out)
def get_pronunciation_score(wer_val, cer_val):
"""Calculate pronunciation score and feedback"""
# Weight WER more heavily than CER
combined_score = (wer_val * 0.7) + (cer_val * 0.3)
if combined_score <= 0.1:
return "🏆 Excellent! (90%+)", "Your pronunciation is outstanding!"
elif combined_score <= 0.2:
return "🎉 Very Good! (80-90%)", "Great pronunciation with minor areas for improvement."
elif combined_score <= 0.4:
return "👍 Good! (60-80%)", "Good effort! Keep practicing for better accuracy."
elif combined_score <= 0.6:
return "📚 Needs Practice (40-60%)", "Focus on clearer pronunciation of highlighted words."
else:
return "💪 Keep Trying! (<40%)", "Don't give up! Practice makes perfect."
# ---------------- MAIN FUNCTION ---------------- #
@spaces.GPU
def compare_pronunciation(audio, language_choice, intended_sentence):
"""Main function to compare pronunciation using SOTA IndicWhisper"""
print(f"🔍 Starting SOTA analysis with language: {language_choice}")
print(f"📝 Audio file: {audio}")
print(f"🎯 Intended sentence: {intended_sentence}")
if audio is None:
print("❌ No audio provided")
return ("❌ Please record audio first.", "", "", "", "", "", "", "")
if not intended_sentence.strip():
print("❌ No intended sentence")
return ("❌ Please generate a practice sentence first.", "", "", "", "", "", "", "")
try:
print(f"🔍 Analyzing pronunciation using SOTA IndicWhisper...")
# Pass 1: SOTA IndicWhisper transcription
print("🔄 Starting Pass 1: SOTA IndicWhisper transcription...")
actual_text = transcribe_audio(audio, language_choice, use_fallback=False)
print(f"✅ SOTA Pass 1 result: {actual_text}")
# Pass 2: Fallback model for comparison
print("🔄 Starting Pass 2: Fallback model transcription...")
fallback_text = transcribe_audio(audio, language_choice, use_fallback=True)
print(f"✅ Fallback Pass 2 result: {fallback_text}")
# Handle transcription errors
if actual_text.startswith("Error:"):
print(f"❌ Transcription error: {actual_text}")
return (f"❌ {actual_text}", "", "", "", "", "", "", "")
# Calculate error metrics using the better transcription
try:
print("🔄 Calculating error metrics...")
wer_val = jiwer.wer(intended_sentence, actual_text)
cer_val = jiwer.cer(intended_sentence, actual_text)
print(f"✅ WER: {wer_val:.3f}, CER: {cer_val:.3f}")
except Exception as e:
print(f"❌ Error calculating metrics: {e}")
wer_val, cer_val = 1.0, 1.0
# Get pronunciation score and feedback
score_text, feedback = get_pronunciation_score(wer_val, cer_val)
print(f"✅ Score: {score_text}")
# Transliterations
print("🔄 Generating transliterations...")
actual_hk = transliterate_to_hk(actual_text, language_choice)
target_hk = transliterate_to_hk(intended_sentence, language_choice)
# Handle script mismatches
if not is_script(actual_text, language_choice) and language_choice != "English":
actual_hk = f"⚠️ Expected {language_choice} script, got mixed/other script"
# Visual feedback
print("🔄 Generating visual feedback...")
diff_html = highlight_differences(intended_sentence, actual_text)
char_html = char_level_highlight(intended_sentence, actual_text)
# Status message with SOTA info
status = f"✅ SOTA Analysis Complete - {score_text}\n💬 {feedback}\n🚀 Powered by IndicWhisper (AI4Bharat SOTA)"
print(f"✅ SOTA analysis completed successfully")
return (
status,
actual_text or "(No transcription)",
fallback_text or "(No fallback transcription)",
f"{wer_val:.3f} ({(1-wer_val)*100:.1f}% word accuracy)",
f"{cer_val:.3f} ({(1-cer_val)*100:.1f}% character accuracy)",
diff_html,
char_html,
f"🎯 Target: {intended_sentence}"
)
except Exception as e:
error_msg = f"❌ Analysis Error: {str(e)[:200]}"
print(f"❌ FATAL ERROR: {e}")
import traceback
traceback.print_exc()
return (error_msg, str(e), "", "", "", "", "", "")
# ---------------- UI ---------------- #
def create_interface():
with gr.Blocks(title="🎙️ SOTA Multilingual Pronunciation Trainer") as demo:
gr.Markdown("""
# 🎙️ SOTA Multilingual Pronunciation Trainer
**Practice pronunciation in Tamil, Malayalam & English** using **IndicWhisper - the State-of-the-Art ASR model**!
### 🏆 **Powered by IndicWhisper:**
- **SOTA Performance:** Lowest WER on 39/59 benchmarks for Indian languages
- **JAX-Optimized:** 70x faster than standard implementations
- **AI4Bharat Research:** Built by IIT Madras for maximum accuracy
### 📋 How to Use:
1. **Select** your target language 🌍
2. **Generate** a practice sentence 🎲
3. **Record** yourself reading it aloud 🎤
4. **Get** detailed feedback with SOTA-level accuracy 📊
### 🎯 Features:
- **SOTA + Fallback analysis** for comprehensive assessment
- **Visual highlighting** of pronunciation errors
- **Romanization** for Indic scripts
- **Advanced metrics** (Word & Character accuracy)
""")
with gr.Row():
with gr.Column(scale=3):
lang_choice = gr.Dropdown(
choices=list(LANG_CODES.keys()),
value="Tamil",
label="🌍 Select Language"
)
with gr.Column(scale=1):
gen_btn = gr.Button("🎲 Generate Sentence", variant="primary")
intended_display = gr.Textbox(
label="📝 Practice Sentence (Read this aloud)",
placeholder="Click 'Generate Sentence' to get started...",
interactive=False,
lines=3
)
audio_input = gr.Audio(
sources=["microphone", "upload"],
type="filepath",
label="🎤 Record Your Pronunciation"
)
analyze_btn = gr.Button("🔍 Analyze with SOTA IndicWhisper", variant="primary")
status_output = gr.Textbox(
label="📊 SOTA Analysis Results",
interactive=False,
lines=4
)
with gr.Row():
with gr.Column():
pass1_out = gr.Textbox(
label="🏆 SOTA IndicWhisper Output",
interactive=False,
lines=2
)
wer_out = gr.Textbox(
label="📈 Word Accuracy",
interactive=False
)
with gr.Column():
pass2_out = gr.Textbox(
label="🔧 Fallback Model Comparison",
interactive=False,
lines=2
)
cer_out = gr.Textbox(
label="📊 Character Accuracy",
interactive=False
)
with gr.Accordion("📝 Detailed Visual Feedback", open=True):
gr.Markdown("""
### 🎨 Color Guide:
- 🟢 **Green**: Correctly pronounced words/characters
- 🔴 **Red**: Missing or mispronounced (strikethrough)
- 🟠 **Orange**: Extra words or substitutions
""")
diff_html_box = gr.HTML(
label="🔍 Word-Level Analysis",
show_label=True
)
char_html_box = gr.HTML(
label="🔤 Character-Level Analysis",
show_label=True
)
target_display = gr.Textbox(
label="🎯 Reference Text",
interactive=False,
visible=False
)
# Event handlers for buttons
gen_btn.click(
fn=get_random_sentence,
inputs=[lang_choice],
outputs=[intended_display]
)
analyze_btn.click(
fn=compare_pronunciation,
inputs=[audio_input, lang_choice, intended_display],
outputs=[
status_output, # status
pass1_out, # SOTA IndicWhisper
pass2_out, # fallback comparison
wer_out, # wer formatted
cer_out, # cer formatted
diff_html_box, # diff_html
char_html_box, # char_html
target_display # target_display
]
)
# Auto-generate sentence on language change
lang_choice.change(
fn=get_random_sentence,
inputs=[lang_choice],
outputs=[intended_display]
)
# Footer
gr.Markdown("""
---
### 🏆 **SOTA Technology Stack:**
- **Primary ASR**: IndicWhisper (AI4Bharat/IIT Madras) - SOTA for Indian languages
- **JAX Optimization**: 70x speed improvement with `parthiv11/indic_whisper_nodcil`
- **Fallback Models**: Specialized fine-tuned models for comparison
- **Benchmark Performance**: Lowest WER on 39/59 Vistaar benchmarks
- **Training Data**: 10,700+ hours across 12 Indian languages
### 🔧 **Technical Details:**
- **Metrics**: WER (Word Error Rate) and CER (Character Error Rate)
- **Transliteration**: Harvard-Kyoto system for Indic scripts
- **Analysis**: SOTA + Fallback comparison for comprehensive feedback
- **Languages**: English, Tamil, and Malayalam with SOTA accuracy
**Note**: Using the most advanced ASR models available for Indian language pronunciation assessment.
**Research**: Based on "Vistaar: Diverse Benchmarks and Training Sets for Indian Language ASR" (AI4Bharat, 2023)
""")
return demo
# ---------------- LAUNCH ---------------- #
if __name__ == "__main__":
print("🚀 Starting SOTA Multilingual Pronunciation Trainer...")
print(f"🔧 Device: {DEVICE}")
print(f"🔧 PyTorch version: {torch.__version__}")
print("🏆 Using IndicWhisper - State-of-the-Art for Indian Languages")
print("⚡ JAX optimization: 70x speed improvement available")
print("📊 SOTA Performance: Lowest WER on 39/59 benchmarks")
print("🎮 GPU functions decorated with @spaces.GPU for HuggingFace Spaces")
demo = create_interface()
demo.launch(
share=True,
show_error=True,
server_name="0.0.0.0",
server_port=7860
)