Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ import torch
|
|
7 |
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
8 |
from indic_transliteration import sanscript
|
9 |
from indic_transliteration.sanscript import transliterate
|
|
|
10 |
|
11 |
# ---------------- CONFIG ---------------- #
|
12 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -63,17 +64,18 @@ SENTENCE_BANK = {
|
|
63 |
]
|
64 |
}
|
65 |
|
66 |
-
#
|
67 |
-
print("Loading Whisper models...")
|
68 |
whisper_models = {}
|
69 |
whisper_processors = {}
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
77 |
|
78 |
# ---------------- HELPERS ---------------- #
|
79 |
def get_random_sentence(language_choice):
|
@@ -91,7 +93,11 @@ def transliterate_to_hk(text, lang_choice):
|
|
91 |
}
|
92 |
return transliterate(text, mapping[lang_choice], sanscript.HK) if mapping[lang_choice] else text
|
93 |
|
|
|
94 |
def transcribe_once(audio_path, language_choice, initial_prompt, beam_size, temperature, condition_on_previous_text):
|
|
|
|
|
|
|
95 |
# Get the appropriate model and processor for the language
|
96 |
model = whisper_models[language_choice]
|
97 |
processor = whisper_processors[language_choice]
|
@@ -151,6 +157,7 @@ def char_level_highlight(ref, hyp):
|
|
151 |
return "".join(out)
|
152 |
|
153 |
# ---------------- MAIN ---------------- #
|
|
|
154 |
def compare_pronunciation(audio, language_choice, intended_sentence,
|
155 |
pass1_beam, pass1_temp, pass1_condition):
|
156 |
if audio is None or not intended_sentence.strip():
|
|
|
7 |
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
8 |
from indic_transliteration import sanscript
|
9 |
from indic_transliteration.sanscript import transliterate
|
10 |
+
import spaces
|
11 |
|
12 |
# ---------------- CONFIG ---------------- #
|
13 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
64 |
]
|
65 |
}
|
66 |
|
67 |
+
# Global variables for models (will be loaded lazily)
|
|
|
68 |
whisper_models = {}
|
69 |
whisper_processors = {}
|
70 |
|
71 |
+
def load_model(language_choice):
|
72 |
+
"""Load model for specific language if not already loaded"""
|
73 |
+
if language_choice not in whisper_models:
|
74 |
+
model_id = MODEL_CONFIGS[language_choice]
|
75 |
+
print(f"Loading {language_choice} model: {model_id}")
|
76 |
+
whisper_models[language_choice] = WhisperForConditionalGeneration.from_pretrained(model_id).to(DEVICE)
|
77 |
+
whisper_processors[language_choice] = WhisperProcessor.from_pretrained(model_id)
|
78 |
+
print(f"{language_choice} model loaded successfully!")
|
79 |
|
80 |
# ---------------- HELPERS ---------------- #
|
81 |
def get_random_sentence(language_choice):
|
|
|
93 |
}
|
94 |
return transliterate(text, mapping[lang_choice], sanscript.HK) if mapping[lang_choice] else text
|
95 |
|
96 |
+
@spaces.GPU
|
97 |
def transcribe_once(audio_path, language_choice, initial_prompt, beam_size, temperature, condition_on_previous_text):
|
98 |
+
# Load model if not already loaded
|
99 |
+
load_model(language_choice)
|
100 |
+
|
101 |
# Get the appropriate model and processor for the language
|
102 |
model = whisper_models[language_choice]
|
103 |
processor = whisper_processors[language_choice]
|
|
|
157 |
return "".join(out)
|
158 |
|
159 |
# ---------------- MAIN ---------------- #
|
160 |
+
@spaces.GPU
|
161 |
def compare_pronunciation(audio, language_choice, intended_sentence,
|
162 |
pass1_beam, pass1_temp, pass1_condition):
|
163 |
if audio is None or not intended_sentence.strip():
|