Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,35 +10,26 @@ import librosa
|
|
10 |
import soundfile as sf
|
11 |
from indic_transliteration import sanscript
|
12 |
from indic_transliteration.sanscript import transliterate
|
|
|
13 |
import warnings
|
14 |
import spaces
|
15 |
-
warnings.filterwarnings("ignore")
|
16 |
|
17 |
-
|
18 |
-
try:
|
19 |
-
from whisper_jax import FlaxWhisperPipeline
|
20 |
-
import jax.numpy as jnp
|
21 |
-
WHISPER_JAX_AVAILABLE = True
|
22 |
-
print("🚀 Using JAX-optimized IndicWhisper (70x faster!)")
|
23 |
-
except ImportError:
|
24 |
-
WHISPER_JAX_AVAILABLE = False
|
25 |
-
print("⚠️ whisper_jax not available, using transformers fallback")
|
26 |
|
27 |
# ---------------- CONFIG ---------------- #
|
28 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
print(f"🔧 Using device: {DEVICE}")
|
|
|
30 |
|
31 |
LANG_CODES = {
|
32 |
"English": "en",
|
33 |
-
"Tamil": "ta",
|
34 |
"Malayalam": "ml"
|
35 |
}
|
36 |
|
37 |
-
|
38 |
-
INDICWHISPER_MODEL = "parthiv11/indic_whisper_nodcil"
|
39 |
|
40 |
-
|
41 |
-
FALLBACK_MODELS = {
|
42 |
"English": "openai/whisper-base.en",
|
43 |
"Tamil": "vasista22/whisper-tamil-large-v2",
|
44 |
"Malayalam": "thennal/whisper-medium-ml"
|
@@ -55,7 +46,7 @@ LANG_PRIMERS = {
|
|
55 |
|
56 |
SCRIPT_PATTERNS = {
|
57 |
"Tamil": re.compile(r"[-]"),
|
58 |
-
"Malayalam": re.compile(r"[ഀ-ൿ]"),
|
59 |
"English": re.compile(r"[A-Za-z]")
|
60 |
}
|
61 |
|
@@ -72,7 +63,7 @@ SENTENCE_BANK = {
|
|
72 |
],
|
73 |
"Tamil": [
|
74 |
"இன்று நல்ல வானிலை உள்ளது.",
|
75 |
-
"நான் தமிழ் கற்றுக்கொண்டு இருக்கிறேன்.",
|
76 |
"எனக்கு புத்தகம் படிக்க விருப்பம்.",
|
77 |
"தமிழ் மொழி மிகவும் அழகானது.",
|
78 |
"குடும்பத்துடன் நேரம் செலவிடுவது முக்கியம்.",
|
@@ -92,89 +83,47 @@ SENTENCE_BANK = {
|
|
92 |
]
|
93 |
}
|
94 |
|
|
|
|
|
|
|
|
|
95 |
# ---------------- MODEL CACHE ---------------- #
|
96 |
indicwhisper_pipeline = None
|
97 |
fallback_models = {}
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
print(f"🔄 Loading SOTA IndicWhisper: {INDICWHISPER_MODEL}")
|
107 |
-
|
108 |
-
if WHISPER_JAX_AVAILABLE:
|
109 |
-
# Use JAX-optimized version (70x faster!)
|
110 |
-
indicwhisper_pipeline = FlaxWhisperPipeline(
|
111 |
-
INDICWHISPER_MODEL,
|
112 |
-
dtype=jnp.bfloat16,
|
113 |
-
batch_size=1
|
114 |
-
)
|
115 |
-
print("✅ IndicWhisper loaded with JAX optimization (70x faster!)")
|
116 |
-
else:
|
117 |
-
# Fallback to transformers if whisper_jax not available
|
118 |
-
from transformers import pipeline
|
119 |
-
indicwhisper_pipeline = pipeline(
|
120 |
-
"automatic-speech-recognition",
|
121 |
-
model=INDICWHISPER_MODEL,
|
122 |
-
device=DEVICE if DEVICE == "cuda" else -1
|
123 |
-
)
|
124 |
-
print("✅ IndicWhisper loaded with transformers (fallback mode)")
|
125 |
-
|
126 |
-
except Exception as e:
|
127 |
-
print(f"❌ Failed to load IndicWhisper: {e}")
|
128 |
-
indicwhisper_pipeline = None
|
129 |
-
raise Exception(f"Could not load IndicWhisper model: {str(e)}")
|
130 |
-
|
131 |
-
return indicwhisper_pipeline
|
132 |
-
|
133 |
-
@spaces.GPU
|
134 |
-
def load_fallback_model(language):
|
135 |
-
"""Load fallback model if IndicWhisper fails"""
|
136 |
-
if language not in fallback_models:
|
137 |
-
model_name = FALLBACK_MODELS[language]
|
138 |
-
print(f"🔄 Loading fallback model for {language}: {model_name}")
|
139 |
-
|
140 |
-
try:
|
141 |
-
processor = AutoProcessor.from_pretrained(model_name)
|
142 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
143 |
-
model_name,
|
144 |
-
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
145 |
-
low_cpu_mem_usage=True,
|
146 |
-
use_safetensors=True
|
147 |
-
).to(DEVICE)
|
148 |
-
|
149 |
-
fallback_models[language] = {"processor": processor, "model": model, "model_name": model_name}
|
150 |
-
print(f"✅ Fallback model loaded for {language}")
|
151 |
-
|
152 |
-
except Exception as e:
|
153 |
-
print(f"❌ Failed to load fallback {model_name}: {e}")
|
154 |
-
raise Exception(f"Could not load fallback {language} model")
|
155 |
-
|
156 |
-
return fallback_models[language]
|
157 |
|
158 |
-
# ---------------- HELPERS ---------------- #
|
159 |
def get_random_sentence(language_choice):
|
160 |
-
"""Get random sentence for practice"""
|
161 |
return random.choice(SENTENCE_BANK[language_choice])
|
162 |
|
163 |
def is_script(text, lang_name):
|
164 |
-
"""Check if text is in expected script"""
|
165 |
pattern = SCRIPT_PATTERNS.get(lang_name)
|
166 |
if not pattern:
|
167 |
return True
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
def transliterate_to_hk(text, lang_choice):
|
171 |
-
"""Transliterate Indic text to Harvard-Kyoto"""
|
172 |
mapping = {
|
173 |
"Tamil": sanscript.TAMIL,
|
174 |
"Malayalam": sanscript.MALAYALAM,
|
175 |
"English": None
|
176 |
}
|
177 |
-
|
178 |
script = mapping.get(lang_choice)
|
179 |
if script and is_script(text, lang_choice):
|
180 |
try:
|
@@ -185,142 +134,191 @@ def transliterate_to_hk(text, lang_choice):
|
|
185 |
return text
|
186 |
|
187 |
def preprocess_audio(audio_path, target_sr=16000):
|
188 |
-
"""Preprocess audio for ASR"""
|
189 |
try:
|
190 |
-
# Load audio
|
191 |
audio, sr = librosa.load(audio_path, sr=target_sr)
|
192 |
-
|
193 |
-
# Normalize audio
|
194 |
if np.max(np.abs(audio)) > 0:
|
195 |
audio = audio / np.max(np.abs(audio))
|
196 |
-
|
197 |
-
# Remove silence from beginning and end
|
198 |
audio, _ = librosa.effects.trim(audio, top_db=20)
|
199 |
-
|
200 |
-
# Ensure minimum length
|
201 |
-
if len(audio) < target_sr * 0.1: # Less than 0.1 seconds
|
202 |
return None, None
|
203 |
-
|
204 |
return audio, target_sr
|
205 |
except Exception as e:
|
206 |
print(f"Audio preprocessing error: {e}")
|
207 |
return None, None
|
208 |
|
209 |
@spaces.GPU
|
210 |
-
def
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
try:
|
213 |
-
|
214 |
-
|
215 |
-
if
|
216 |
-
#
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
elif isinstance(result, str):
|
221 |
return result.strip()
|
222 |
else:
|
223 |
return str(result).strip()
|
224 |
else:
|
225 |
-
|
226 |
-
result = pipeline(audio_path)
|
227 |
-
return result.get('text', '').strip()
|
228 |
-
|
229 |
except Exception as e:
|
230 |
-
print(f"
|
231 |
raise e
|
232 |
|
233 |
@spaces.GPU
|
234 |
-
def
|
235 |
-
"""Transcribe using fallback models"""
|
236 |
try:
|
237 |
-
components =
|
238 |
processor = components["processor"]
|
239 |
model = components["model"]
|
240 |
-
|
241 |
-
# Preprocess audio
|
242 |
audio, sr = preprocess_audio(audio_path)
|
243 |
if audio is None:
|
244 |
return "Error: Audio too short or could not be processed"
|
245 |
-
|
246 |
-
# Prepare inputs
|
247 |
inputs = processor(
|
248 |
-
audio,
|
249 |
-
sampling_rate=sr,
|
250 |
return_tensors="pt",
|
251 |
padding=True
|
252 |
)
|
253 |
-
|
254 |
-
# Move to device
|
255 |
input_features = inputs.input_features.to(DEVICE)
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
with torch.no_grad():
|
259 |
-
|
260 |
-
"input_features": input_features,
|
261 |
"max_length": 200,
|
262 |
"num_beams": 3,
|
263 |
"do_sample": False
|
264 |
}
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
task="transcribe"
|
274 |
-
)
|
275 |
-
generate_kwargs["forced_decoder_ids"] = forced_decoder_ids
|
276 |
-
except Exception as e:
|
277 |
-
print(f"⚠️ Language forcing failed: {e}")
|
278 |
-
|
279 |
-
predicted_ids = model.generate(**generate_kwargs)
|
280 |
-
|
281 |
-
# Decode
|
282 |
transcription = processor.batch_decode(
|
283 |
-
predicted_ids,
|
284 |
skip_special_tokens=True,
|
285 |
clean_up_tokenization_spaces=True
|
286 |
)[0]
|
287 |
-
|
288 |
return transcription.strip() or "(No transcription generated)"
|
289 |
-
|
290 |
except Exception as e:
|
291 |
-
print(f"
|
292 |
return f"Error: {str(e)[:150]}..."
|
293 |
|
294 |
@spaces.GPU
|
295 |
-
def transcribe_audio(audio_path, language, initial_prompt="",
|
296 |
-
"""Main transcription function with IndicWhisper + fallback"""
|
297 |
try:
|
298 |
-
if
|
299 |
-
print(f"🔄 Using
|
300 |
-
return
|
301 |
else:
|
302 |
-
print(f"🔄 Using
|
303 |
-
return
|
304 |
-
|
305 |
except Exception as e:
|
306 |
-
print(f"Transcription failed, trying
|
307 |
-
if not
|
308 |
-
|
309 |
-
return transcribe_audio(audio_path, language, initial_prompt, use_fallback=True)
|
310 |
else:
|
311 |
return f"Error: All transcription methods failed - {str(e)[:100]}"
|
312 |
|
313 |
def highlight_differences(ref, hyp):
|
314 |
-
"""Highlight word-level differences with better styling"""
|
315 |
if not ref.strip() or not hyp.strip():
|
316 |
return "No text to compare"
|
317 |
-
|
318 |
ref_words = ref.strip().split()
|
319 |
hyp_words = hyp.strip().split()
|
320 |
-
|
321 |
sm = difflib.SequenceMatcher(None, ref_words, hyp_words)
|
322 |
out_html = []
|
323 |
-
|
324 |
for tag, i1, i2, j1, j2 in sm.get_opcodes():
|
325 |
if tag == 'equal':
|
326 |
out_html.extend([f"<span style='color:green; font-weight:bold; background-color:#e8f5e8; padding:2px 4px; margin:1px; border-radius:3px;'>{w}</span>" for w in ref_words[i1:i2]])
|
@@ -331,17 +329,15 @@ def highlight_differences(ref, hyp):
|
|
331 |
out_html.extend([f"<span style='color:red; text-decoration:line-through; background-color:#ffe8e8; padding:2px 4px; margin:1px; border-radius:3px;'>{w}</span>" for w in ref_words[i1:i2]])
|
332 |
elif tag == 'insert':
|
333 |
out_html.extend([f"<span style='color:orange; font-weight:bold; background-color:#fff3cd; padding:2px 4px; margin:1px; border-radius:3px;'>+{w}</span>" for w in hyp_words[j1:j2]])
|
334 |
-
|
335 |
return " ".join(out_html)
|
336 |
|
337 |
def char_level_highlight(ref, hyp):
|
338 |
-
"""Highlight character-level differences"""
|
339 |
if not ref.strip() or not hyp.strip():
|
340 |
return "No text to compare"
|
341 |
-
|
342 |
sm = difflib.SequenceMatcher(None, list(ref), list(hyp))
|
343 |
out = []
|
344 |
-
|
345 |
for tag, i1, i2, j1, j2 in sm.get_opcodes():
|
346 |
if tag == 'equal':
|
347 |
out.extend([f"<span style='color:green; background-color:#e8f5e8;'>{c}</span>" for c in ref[i1:i2]])
|
@@ -349,14 +345,10 @@ def char_level_highlight(ref, hyp):
|
|
349 |
out.extend([f"<span style='color:red; text-decoration:underline; background-color:#ffe8e8; font-weight:bold;'>{c}</span>" for c in ref[i1:i2]])
|
350 |
elif tag == 'insert':
|
351 |
out.extend([f"<span style='color:orange; background-color:#fff3cd; font-weight:bold;'>{c}</span>" for c in hyp[j1:j2]])
|
352 |
-
|
353 |
return "".join(out)
|
354 |
|
355 |
def get_pronunciation_score(wer_val, cer_val):
|
356 |
-
"""Calculate pronunciation score and feedback"""
|
357 |
-
# Weight WER more heavily than CER
|
358 |
combined_score = (wer_val * 0.7) + (cer_val * 0.3)
|
359 |
-
|
360 |
if combined_score <= 0.1:
|
361 |
return "🏆 Excellent! (90%+)", "Your pronunciation is outstanding!"
|
362 |
elif combined_score <= 0.2:
|
@@ -368,83 +360,75 @@ def get_pronunciation_score(wer_val, cer_val):
|
|
368 |
else:
|
369 |
return "💪 Keep Trying! (<40%)", "Don't give up! Practice makes perfect."
|
370 |
|
371 |
-
# ---------------- MAIN FUNCTION ---------------- #
|
372 |
@spaces.GPU
|
373 |
def compare_pronunciation(audio, language_choice, intended_sentence):
|
374 |
-
"
|
375 |
-
print(f"🔍 Starting SOTA analysis with language: {language_choice}")
|
376 |
print(f"📝 Audio file: {audio}")
|
377 |
print(f"🎯 Intended sentence: {intended_sentence}")
|
378 |
-
|
379 |
if audio is None:
|
380 |
print("❌ No audio provided")
|
381 |
return ("❌ Please record audio first.", "", "", "", "", "", "", "")
|
382 |
-
|
383 |
if not intended_sentence.strip():
|
384 |
print("❌ No intended sentence")
|
385 |
return ("❌ Please generate a practice sentence first.", "", "", "", "", "", "", "")
|
386 |
-
|
387 |
try:
|
388 |
-
print(f"
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
# Handle transcription errors
|
401 |
-
if actual_text.startswith("Error:"):
|
402 |
print(f"❌ Transcription error: {actual_text}")
|
403 |
return (f"❌ {actual_text}", "", "", "", "", "", "", "")
|
404 |
-
|
405 |
-
#
|
|
|
|
|
|
|
406 |
try:
|
407 |
print("🔄 Calculating error metrics...")
|
408 |
-
wer_val = jiwer.wer(
|
409 |
-
cer_val = jiwer.cer(
|
410 |
print(f"✅ WER: {wer_val:.3f}, CER: {cer_val:.3f}")
|
411 |
except Exception as e:
|
412 |
print(f"❌ Error calculating metrics: {e}")
|
413 |
wer_val, cer_val = 1.0, 1.0
|
414 |
-
|
415 |
-
# Get pronunciation score and feedback
|
416 |
score_text, feedback = get_pronunciation_score(wer_val, cer_val)
|
417 |
-
|
418 |
-
|
419 |
-
# Transliterations
|
420 |
print("🔄 Generating transliterations...")
|
421 |
actual_hk = transliterate_to_hk(actual_text, language_choice)
|
422 |
target_hk = transliterate_to_hk(intended_sentence, language_choice)
|
423 |
-
|
424 |
-
# Handle script mismatches
|
425 |
if not is_script(actual_text, language_choice) and language_choice != "English":
|
426 |
actual_hk = f"⚠️ Expected {language_choice} script, got mixed/other script"
|
427 |
-
|
428 |
-
# Visual feedback
|
429 |
print("🔄 Generating visual feedback...")
|
430 |
diff_html = highlight_differences(intended_sentence, actual_text)
|
431 |
char_html = char_level_highlight(intended_sentence, actual_text)
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
return (
|
438 |
status,
|
439 |
-
|
440 |
-
|
441 |
f"{wer_val:.3f} ({(1-wer_val)*100:.1f}% word accuracy)",
|
442 |
f"{cer_val:.3f} ({(1-cer_val)*100:.1f}% character accuracy)",
|
443 |
diff_html,
|
444 |
char_html,
|
445 |
f"🎯 Target: {intended_sentence}"
|
446 |
)
|
447 |
-
|
448 |
except Exception as e:
|
449 |
error_msg = f"❌ Analysis Error: {str(e)[:200]}"
|
450 |
print(f"❌ FATAL ERROR: {e}")
|
@@ -452,175 +436,159 @@ def compare_pronunciation(audio, language_choice, intended_sentence):
|
|
452 |
traceback.print_exc()
|
453 |
return (error_msg, str(e), "", "", "", "", "", "")
|
454 |
|
455 |
-
# ---------------- UI ---------------- #
|
456 |
def create_interface():
|
457 |
with gr.Blocks(title="🎙️ SOTA Multilingual Pronunciation Trainer") as demo:
|
458 |
-
|
459 |
gr.Markdown("""
|
460 |
-
# 🎙️
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
### 🏆
|
465 |
-
-
|
466 |
-
-
|
467 |
-
-
|
468 |
-
|
469 |
### 📋 How to Use:
|
470 |
-
1.
|
471 |
-
2.
|
472 |
-
3.
|
473 |
-
4.
|
474 |
-
|
475 |
### 🎯 Features:
|
476 |
-
-
|
477 |
-
-
|
478 |
-
-
|
479 |
-
-
|
480 |
""")
|
481 |
-
|
482 |
with gr.Row():
|
483 |
with gr.Column(scale=3):
|
484 |
lang_choice = gr.Dropdown(
|
485 |
-
choices=list(LANG_CODES.keys()),
|
486 |
value="Tamil",
|
487 |
label="🌍 Select Language"
|
488 |
)
|
489 |
with gr.Column(scale=1):
|
490 |
gen_btn = gr.Button("🎲 Generate Sentence", variant="primary")
|
491 |
-
|
492 |
intended_display = gr.Textbox(
|
493 |
label="📝 Practice Sentence (Read this aloud)",
|
494 |
placeholder="Click 'Generate Sentence' to get started...",
|
495 |
interactive=False,
|
496 |
lines=3
|
497 |
)
|
498 |
-
|
499 |
audio_input = gr.Audio(
|
500 |
-
sources=["microphone", "upload"],
|
501 |
type="filepath",
|
502 |
label="🎤 Record Your Pronunciation"
|
503 |
)
|
504 |
-
|
505 |
-
analyze_btn = gr.Button("🔍 Analyze with
|
506 |
-
|
507 |
status_output = gr.Textbox(
|
508 |
-
label="📊
|
509 |
interactive=False,
|
510 |
lines=4
|
511 |
)
|
512 |
-
|
513 |
with gr.Row():
|
514 |
with gr.Column():
|
515 |
pass1_out = gr.Textbox(
|
516 |
-
label="🏆
|
517 |
interactive=False,
|
518 |
lines=2
|
519 |
)
|
520 |
wer_out = gr.Textbox(
|
521 |
-
label="📈 Word Accuracy",
|
522 |
interactive=False
|
523 |
)
|
524 |
-
|
525 |
with gr.Column():
|
526 |
pass2_out = gr.Textbox(
|
527 |
-
label="🔧
|
528 |
interactive=False,
|
529 |
lines=2
|
530 |
)
|
|
|
531 |
cer_out = gr.Textbox(
|
532 |
-
label="📊 Character Accuracy",
|
533 |
interactive=False
|
534 |
)
|
535 |
-
|
536 |
with gr.Accordion("📝 Detailed Visual Feedback", open=True):
|
537 |
gr.Markdown("""
|
538 |
### 🎨 Color Guide:
|
539 |
-
- 🟢
|
540 |
-
- 🔴
|
541 |
-
- 🟠
|
542 |
""")
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
show_label=True
|
547 |
-
)
|
548 |
-
char_html_box = gr.HTML(
|
549 |
-
label="🔤 Character-Level Analysis",
|
550 |
-
show_label=True
|
551 |
-
)
|
552 |
-
|
553 |
target_display = gr.Textbox(
|
554 |
label="🎯 Reference Text",
|
555 |
interactive=False,
|
556 |
visible=False
|
557 |
)
|
558 |
-
|
559 |
-
# Event handlers for buttons
|
560 |
gen_btn.click(
|
561 |
fn=get_random_sentence,
|
562 |
inputs=[lang_choice],
|
563 |
outputs=[intended_display]
|
564 |
)
|
565 |
-
|
566 |
analyze_btn.click(
|
567 |
fn=compare_pronunciation,
|
568 |
inputs=[audio_input, lang_choice, intended_display],
|
569 |
outputs=[
|
570 |
-
status_output,
|
571 |
-
pass1_out,
|
572 |
-
pass2_out,
|
573 |
-
wer_out,
|
574 |
-
cer_out,
|
575 |
-
diff_html_box,
|
576 |
-
char_html_box,
|
577 |
-
target_display
|
578 |
]
|
579 |
)
|
580 |
-
|
581 |
-
# Auto-generate sentence on language change
|
582 |
lang_choice.change(
|
583 |
fn=get_random_sentence,
|
584 |
inputs=[lang_choice],
|
585 |
outputs=[intended_display]
|
586 |
)
|
587 |
-
|
588 |
-
# Footer
|
589 |
gr.Markdown("""
|
590 |
---
|
591 |
-
### 🏆
|
592 |
-
-
|
593 |
-
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
-
|
601 |
-
-
|
602 |
-
-
|
603 |
-
|
604 |
-
**Note**: Using the most advanced ASR models available for Indian language pronunciation assessment.
|
605 |
-
**Research**: Based on "Vistaar: Diverse Benchmarks and Training Sets for Indian Language ASR" (AI4Bharat, 2023)
|
606 |
""")
|
607 |
-
|
608 |
return demo
|
609 |
|
610 |
-
# ---------------- LAUNCH ---------------- #
|
611 |
if __name__ == "__main__":
|
612 |
-
print("🚀 Starting
|
613 |
-
print(f"🔧 Device: {DEVICE}")
|
614 |
print(f"🔧 PyTorch version: {torch.__version__}")
|
615 |
-
print("🏆 Using
|
616 |
-
print("⚡
|
617 |
-
print("📊
|
618 |
print("🎮 GPU functions decorated with @spaces.GPU for HuggingFace Spaces")
|
619 |
-
|
620 |
demo = create_interface()
|
621 |
demo.launch(
|
622 |
share=True,
|
623 |
show_error=True,
|
624 |
server_name="0.0.0.0",
|
625 |
server_port=7860
|
626 |
-
)
|
|
|
10 |
import soundfile as sf
|
11 |
from indic_transliteration import sanscript
|
12 |
from indic_transliteration.sanscript import transliterate
|
13 |
+
import unicodedata
|
14 |
import warnings
|
15 |
import spaces
|
|
|
16 |
|
17 |
+
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# ---------------- CONFIG ---------------- #
|
20 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
print(f"🔧 Using device: {DEVICE}")
|
22 |
+
DEVICE_INDEX = 0 if DEVICE == "cuda" else -1
|
23 |
|
24 |
LANG_CODES = {
|
25 |
"English": "en",
|
26 |
+
"Tamil": "ta",
|
27 |
"Malayalam": "ml"
|
28 |
}
|
29 |
|
30 |
+
INDICWHISPER_MODEL = "openai/whisper-large-v2"
|
|
|
31 |
|
32 |
+
SPECIALIZED_MODELS = {
|
|
|
33 |
"English": "openai/whisper-base.en",
|
34 |
"Tamil": "vasista22/whisper-tamil-large-v2",
|
35 |
"Malayalam": "thennal/whisper-medium-ml"
|
|
|
46 |
|
47 |
SCRIPT_PATTERNS = {
|
48 |
"Tamil": re.compile(r"[-]"),
|
49 |
+
"Malayalam": re.compile(r"[ഀ-ൿ]"),
|
50 |
"English": re.compile(r"[A-Za-z]")
|
51 |
}
|
52 |
|
|
|
63 |
],
|
64 |
"Tamil": [
|
65 |
"இன்று நல்ல வானிலை உள்ளது.",
|
66 |
+
"நான் தமிழ் கற்றுக்கொண்டு இருக்கிறேன்.",
|
67 |
"எனக்கு புத்தகம் படிக்க விருப்பம்.",
|
68 |
"தமிழ் மொழி மிகவும் அழகானது.",
|
69 |
"குடும்பத்துடன் நேரம் செலவிடுவது முக்கியம்.",
|
|
|
83 |
]
|
84 |
}
|
85 |
|
86 |
+
# Controls for stricter script checking and normalization
|
87 |
+
STRICT_SCRIPT_CHECK = False # set True for strict script-only validation
|
88 |
+
NORMALIZE_TEXT_FOR_METRICS = True
|
89 |
+
|
90 |
# ---------------- MODEL CACHE ---------------- #
|
91 |
indicwhisper_pipeline = None
|
92 |
fallback_models = {}
|
93 |
+
WHISPER_JAX_AVAILABLE = False
|
94 |
|
95 |
+
def normalize_text(s: str) -> str:
|
96 |
+
if not NORMALIZE_TEXT_FOR_METRICS:
|
97 |
+
return s
|
98 |
+
# Normalize unicode and collapse whitespace; do not remove language-specific punctuation
|
99 |
+
s = unicodedata.normalize("NFC", s)
|
100 |
+
s = re.sub(r"\s+", " ", s).strip()
|
101 |
+
return s
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
|
|
103 |
def get_random_sentence(language_choice):
|
|
|
104 |
return random.choice(SENTENCE_BANK[language_choice])
|
105 |
|
106 |
def is_script(text, lang_name):
|
|
|
107 |
pattern = SCRIPT_PATTERNS.get(lang_name)
|
108 |
if not pattern:
|
109 |
return True
|
110 |
+
if not STRICT_SCRIPT_CHECK:
|
111 |
+
# any occurrence of script chars counts as match
|
112 |
+
return bool(pattern.search(text))
|
113 |
+
# strict: allow only spaces and target script chars
|
114 |
+
for ch in text:
|
115 |
+
if ch.isspace():
|
116 |
+
continue
|
117 |
+
if not pattern.match(ch):
|
118 |
+
return False
|
119 |
+
return True
|
120 |
|
121 |
def transliterate_to_hk(text, lang_choice):
|
|
|
122 |
mapping = {
|
123 |
"Tamil": sanscript.TAMIL,
|
124 |
"Malayalam": sanscript.MALAYALAM,
|
125 |
"English": None
|
126 |
}
|
|
|
127 |
script = mapping.get(lang_choice)
|
128 |
if script and is_script(text, lang_choice):
|
129 |
try:
|
|
|
134 |
return text
|
135 |
|
136 |
def preprocess_audio(audio_path, target_sr=16000):
|
|
|
137 |
try:
|
|
|
138 |
audio, sr = librosa.load(audio_path, sr=target_sr)
|
|
|
|
|
139 |
if np.max(np.abs(audio)) > 0:
|
140 |
audio = audio / np.max(np.abs(audio))
|
|
|
|
|
141 |
audio, _ = librosa.effects.trim(audio, top_db=20)
|
142 |
+
if len(audio) < target_sr * 0.1:
|
|
|
|
|
143 |
return None, None
|
|
|
144 |
return audio, target_sr
|
145 |
except Exception as e:
|
146 |
print(f"Audio preprocessing error: {e}")
|
147 |
return None, None
|
148 |
|
149 |
@spaces.GPU
|
150 |
+
def load_indicwhisper():
|
151 |
+
global indicwhisper_pipeline, WHISPER_JAX_AVAILABLE
|
152 |
+
if indicwhisper_pipeline is None:
|
153 |
+
try:
|
154 |
+
# Try JAX pipeline
|
155 |
+
try:
|
156 |
+
from whisper_jax import FlaxWhisperPipeline
|
157 |
+
import jax.numpy as jnp
|
158 |
+
print(f"🔄 Loading JAX-optimized model: {INDICWHISPER_MODEL}")
|
159 |
+
indicwhisper_pipeline = FlaxWhisperPipeline(
|
160 |
+
INDICWHISPER_MODEL,
|
161 |
+
dtype=jnp.bfloat16,
|
162 |
+
batch_size=1
|
163 |
+
)
|
164 |
+
WHISPER_JAX_AVAILABLE = True
|
165 |
+
print("✅ JAX-optimized model loaded successfully!")
|
166 |
+
return indicwhisper_pipeline
|
167 |
+
except Exception as e:
|
168 |
+
print(f"⚠️ JAX loading failed: {e}")
|
169 |
+
WHISPER_JAX_AVAILABLE = False
|
170 |
+
|
171 |
+
# Fallback to transformers pipeline
|
172 |
+
print(f"🔄 Loading transformers pipeline: {INDICWHISPER_MODEL}")
|
173 |
+
from transformers import pipeline
|
174 |
+
indicwhisper_pipeline = pipeline(
|
175 |
+
"automatic-speech-recognition",
|
176 |
+
model=INDICWHISPER_MODEL,
|
177 |
+
device=DEVICE_INDEX,
|
178 |
+
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32
|
179 |
+
)
|
180 |
+
print("✅ High-performance model loaded with transformers!")
|
181 |
+
except Exception as e:
|
182 |
+
print(f"❌ Failed to load primary model: {e}")
|
183 |
+
indicwhisper_pipeline = None
|
184 |
+
raise Exception(f"Could not load high-performance model: {str(e)}")
|
185 |
+
return indicwhisper_pipeline
|
186 |
+
|
187 |
+
@spaces.GPU
|
188 |
+
def load_specialized_model(language):
|
189 |
+
if language not in fallback_models:
|
190 |
+
model_name = SPECIALIZED_MODELS[language]
|
191 |
+
print(f"🔄 Loading specialized model for {language}: {model_name}")
|
192 |
+
try:
|
193 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
194 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
195 |
+
model_name,
|
196 |
+
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
197 |
+
low_cpu_mem_usage=True,
|
198 |
+
use_safetensors=True
|
199 |
+
).to(DEVICE)
|
200 |
+
model.eval()
|
201 |
+
fallback_models[language] = {"processor": processor, "model": model, "model_name": model_name}
|
202 |
+
print(f"✅ Specialized model loaded for {language}")
|
203 |
+
except Exception as e:
|
204 |
+
print(f"❌ Failed to load specialized {model_name}: {e}")
|
205 |
+
raise Exception(f"Could not load specialized {language} model")
|
206 |
+
return fallback_models[language]
|
207 |
+
|
208 |
+
@spaces.GPU
|
209 |
+
def transcribe_with_primary_model(audio_path, language):
|
210 |
try:
|
211 |
+
pipe = load_indicwhisper()
|
212 |
+
|
213 |
+
if callable(pipe):
|
214 |
+
# Try to set forced decoder ids when available
|
215 |
+
if language != "English":
|
216 |
+
lang_code = LANG_CODES.get(language, "en")
|
217 |
+
try:
|
218 |
+
if hasattr(pipe, "model") and hasattr(pipe, "tokenizer"):
|
219 |
+
if hasattr(pipe.model, "config"):
|
220 |
+
forced_ids = pipe.tokenizer.get_decoder_prompt_ids(
|
221 |
+
language=lang_code, task="transcribe"
|
222 |
+
)
|
223 |
+
pipe.model.config.forced_decoder_ids = forced_ids
|
224 |
+
except Exception as e:
|
225 |
+
print(f"⚠️ Language forcing failed: {e}")
|
226 |
+
|
227 |
+
result = pipe(audio_path)
|
228 |
+
if isinstance(result, dict) and "text" in result:
|
229 |
+
return result["text"].strip()
|
230 |
elif isinstance(result, str):
|
231 |
return result.strip()
|
232 |
else:
|
233 |
return str(result).strip()
|
234 |
else:
|
235 |
+
return "Error: Pipeline not properly initialized"
|
|
|
|
|
|
|
236 |
except Exception as e:
|
237 |
+
print(f"Primary model transcription error: {e}")
|
238 |
raise e
|
239 |
|
240 |
@spaces.GPU
|
241 |
+
def transcribe_with_specialized_model(audio_path, language):
|
|
|
242 |
try:
|
243 |
+
components = load_specialized_model(language)
|
244 |
processor = components["processor"]
|
245 |
model = components["model"]
|
246 |
+
|
|
|
247 |
audio, sr = preprocess_audio(audio_path)
|
248 |
if audio is None:
|
249 |
return "Error: Audio too short or could not be processed"
|
250 |
+
|
|
|
251 |
inputs = processor(
|
252 |
+
audio,
|
253 |
+
sampling_rate=sr,
|
254 |
return_tensors="pt",
|
255 |
padding=True
|
256 |
)
|
|
|
|
|
257 |
input_features = inputs.input_features.to(DEVICE)
|
258 |
+
|
259 |
+
forced_decoder_ids = None
|
260 |
+
if language != "English":
|
261 |
+
lang_code = LANG_CODES.get(language, "en")
|
262 |
+
try:
|
263 |
+
if hasattr(processor, "get_decoder_prompt_ids"):
|
264 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(
|
265 |
+
language=lang_code,
|
266 |
+
task="transcribe"
|
267 |
+
)
|
268 |
+
except Exception as e:
|
269 |
+
print(f"⚠️ Language forcing failed: {e}")
|
270 |
+
|
271 |
with torch.no_grad():
|
272 |
+
gen_kwargs = {
|
|
|
273 |
"max_length": 200,
|
274 |
"num_beams": 3,
|
275 |
"do_sample": False
|
276 |
}
|
277 |
+
if forced_decoder_ids:
|
278 |
+
gen_kwargs["forced_decoder_ids"] = forced_decoder_ids
|
279 |
+
|
280 |
+
predicted_ids = model.generate(
|
281 |
+
input_features,
|
282 |
+
**gen_kwargs
|
283 |
+
)
|
284 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
transcription = processor.batch_decode(
|
286 |
+
predicted_ids,
|
287 |
skip_special_tokens=True,
|
288 |
clean_up_tokenization_spaces=True
|
289 |
)[0]
|
290 |
+
|
291 |
return transcription.strip() or "(No transcription generated)"
|
|
|
292 |
except Exception as e:
|
293 |
+
print(f"Specialized model transcription error: {e}")
|
294 |
return f"Error: {str(e)[:150]}..."
|
295 |
|
296 |
@spaces.GPU
|
297 |
+
def transcribe_audio(audio_path, language, initial_prompt="", use_specialized=False):
|
|
|
298 |
try:
|
299 |
+
if use_specialized:
|
300 |
+
print(f"🔄 Using specialized model for {language}")
|
301 |
+
return transcribe_with_specialized_model(audio_path, language)
|
302 |
else:
|
303 |
+
print(f"🔄 Using high-performance primary model for {language}")
|
304 |
+
return transcribe_with_primary_model(audio_path, language)
|
|
|
305 |
except Exception as e:
|
306 |
+
print(f"Transcription failed, trying specialized model: {e}")
|
307 |
+
if not use_specialized:
|
308 |
+
return transcribe_audio(audio_path, language, initial_prompt, use_specialized=True)
|
|
|
309 |
else:
|
310 |
return f"Error: All transcription methods failed - {str(e)[:100]}"
|
311 |
|
312 |
def highlight_differences(ref, hyp):
|
|
|
313 |
if not ref.strip() or not hyp.strip():
|
314 |
return "No text to compare"
|
315 |
+
|
316 |
ref_words = ref.strip().split()
|
317 |
hyp_words = hyp.strip().split()
|
318 |
+
|
319 |
sm = difflib.SequenceMatcher(None, ref_words, hyp_words)
|
320 |
out_html = []
|
321 |
+
|
322 |
for tag, i1, i2, j1, j2 in sm.get_opcodes():
|
323 |
if tag == 'equal':
|
324 |
out_html.extend([f"<span style='color:green; font-weight:bold; background-color:#e8f5e8; padding:2px 4px; margin:1px; border-radius:3px;'>{w}</span>" for w in ref_words[i1:i2]])
|
|
|
329 |
out_html.extend([f"<span style='color:red; text-decoration:line-through; background-color:#ffe8e8; padding:2px 4px; margin:1px; border-radius:3px;'>{w}</span>" for w in ref_words[i1:i2]])
|
330 |
elif tag == 'insert':
|
331 |
out_html.extend([f"<span style='color:orange; font-weight:bold; background-color:#fff3cd; padding:2px 4px; margin:1px; border-radius:3px;'>+{w}</span>" for w in hyp_words[j1:j2]])
|
332 |
+
|
333 |
return " ".join(out_html)
|
334 |
|
335 |
def char_level_highlight(ref, hyp):
|
|
|
336 |
if not ref.strip() or not hyp.strip():
|
337 |
return "No text to compare"
|
338 |
+
|
339 |
sm = difflib.SequenceMatcher(None, list(ref), list(hyp))
|
340 |
out = []
|
|
|
341 |
for tag, i1, i2, j1, j2 in sm.get_opcodes():
|
342 |
if tag == 'equal':
|
343 |
out.extend([f"<span style='color:green; background-color:#e8f5e8;'>{c}</span>" for c in ref[i1:i2]])
|
|
|
345 |
out.extend([f"<span style='color:red; text-decoration:underline; background-color:#ffe8e8; font-weight:bold;'>{c}</span>" for c in ref[i1:i2]])
|
346 |
elif tag == 'insert':
|
347 |
out.extend([f"<span style='color:orange; background-color:#fff3cd; font-weight:bold;'>{c}</span>" for c in hyp[j1:j2]])
|
|
|
348 |
return "".join(out)
|
349 |
|
350 |
def get_pronunciation_score(wer_val, cer_val):
|
|
|
|
|
351 |
combined_score = (wer_val * 0.7) + (cer_val * 0.3)
|
|
|
352 |
if combined_score <= 0.1:
|
353 |
return "🏆 Excellent! (90%+)", "Your pronunciation is outstanding!"
|
354 |
elif combined_score <= 0.2:
|
|
|
360 |
else:
|
361 |
return "💪 Keep Trying! (<40%)", "Don't give up! Practice makes perfect."
|
362 |
|
|
|
363 |
@spaces.GPU
|
364 |
def compare_pronunciation(audio, language_choice, intended_sentence):
|
365 |
+
print(f"🔍 Starting advanced analysis with language: {language_choice}")
|
|
|
366 |
print(f"📝 Audio file: {audio}")
|
367 |
print(f"🎯 Intended sentence: {intended_sentence}")
|
368 |
+
|
369 |
if audio is None:
|
370 |
print("❌ No audio provided")
|
371 |
return ("❌ Please record audio first.", "", "", "", "", "", "", "")
|
372 |
+
|
373 |
if not intended_sentence.strip():
|
374 |
print("❌ No intended sentence")
|
375 |
return ("❌ Please generate a practice sentence first.", "", "", "", "", "", "", "")
|
376 |
+
|
377 |
try:
|
378 |
+
print(f"🔄 Starting Pass 1: High-performance model transcription...")
|
379 |
+
primary_text = transcribe_audio(audio, language_choice, use_specialized=False)
|
380 |
+
print(f"✅ Primary model result: {primary_text}")
|
381 |
+
|
382 |
+
print("🔄 Starting Pass 2: Specialized model transcription...")
|
383 |
+
specialized_text = transcribe_audio(audio, language_choice, use_specialized=True)
|
384 |
+
print(f"✅ Specialized model result: {specialized_text}")
|
385 |
+
|
386 |
+
actual_text = primary_text if not str(primary_text).startswith("Error:") else specialized_text
|
387 |
+
|
388 |
+
if str(actual_text).startswith("Error:"):
|
|
|
|
|
|
|
389 |
print(f"❌ Transcription error: {actual_text}")
|
390 |
return (f"❌ {actual_text}", "", "", "", "", "", "", "")
|
391 |
+
|
392 |
+
# Normalize for metrics if enabled
|
393 |
+
ref_for_metrics = normalize_text(intended_sentence)
|
394 |
+
hyp_for_metrics = normalize_text(actual_text)
|
395 |
+
|
396 |
try:
|
397 |
print("🔄 Calculating error metrics...")
|
398 |
+
wer_val = jiwer.wer(ref_for_metrics, hyp_for_metrics)
|
399 |
+
cer_val = jiwer.cer(ref_for_metrics, hyp_for_metrics)
|
400 |
print(f"✅ WER: {wer_val:.3f}, CER: {cer_val:.3f}")
|
401 |
except Exception as e:
|
402 |
print(f"❌ Error calculating metrics: {e}")
|
403 |
wer_val, cer_val = 1.0, 1.0
|
404 |
+
|
|
|
405 |
score_text, feedback = get_pronunciation_score(wer_val, cer_val)
|
406 |
+
|
|
|
|
|
407 |
print("🔄 Generating transliterations...")
|
408 |
actual_hk = transliterate_to_hk(actual_text, language_choice)
|
409 |
target_hk = transliterate_to_hk(intended_sentence, language_choice)
|
410 |
+
|
|
|
411 |
if not is_script(actual_text, language_choice) and language_choice != "English":
|
412 |
actual_hk = f"⚠️ Expected {language_choice} script, got mixed/other script"
|
413 |
+
|
|
|
414 |
print("🔄 Generating visual feedback...")
|
415 |
diff_html = highlight_differences(intended_sentence, actual_text)
|
416 |
char_html = char_level_highlight(intended_sentence, actual_text)
|
417 |
+
|
418 |
+
status = f"✅ Advanced Analysis Complete - {score_text}\n💬 {feedback}\n🚀 Powered by High-Performance ASR Models"
|
419 |
+
print(f"✅ Advanced analysis completed successfully")
|
420 |
+
|
|
|
421 |
return (
|
422 |
status,
|
423 |
+
primary_text or "(No primary transcription)",
|
424 |
+
specialized_text or "(No specialized transcription)",
|
425 |
f"{wer_val:.3f} ({(1-wer_val)*100:.1f}% word accuracy)",
|
426 |
f"{cer_val:.3f} ({(1-cer_val)*100:.1f}% character accuracy)",
|
427 |
diff_html,
|
428 |
char_html,
|
429 |
f"🎯 Target: {intended_sentence}"
|
430 |
)
|
431 |
+
|
432 |
except Exception as e:
|
433 |
error_msg = f"❌ Analysis Error: {str(e)[:200]}"
|
434 |
print(f"❌ FATAL ERROR: {e}")
|
|
|
436 |
traceback.print_exc()
|
437 |
return (error_msg, str(e), "", "", "", "", "", "")
|
438 |
|
|
|
439 |
def create_interface():
|
440 |
with gr.Blocks(title="🎙️ SOTA Multilingual Pronunciation Trainer") as demo:
|
441 |
+
|
442 |
gr.Markdown("""
|
443 |
+
# 🎙️ Advanced Multilingual Pronunciation Trainer
|
444 |
+
|
445 |
+
Practice pronunciation in Tamil, Malayalam & English using high-performance ASR models!
|
446 |
+
|
447 |
+
### 🏆 Powered by Advanced Models:
|
448 |
+
- Dual-Model Analysis: Primary + specialized model comparison
|
449 |
+
- High Accuracy: Language-specific fine-tuned models
|
450 |
+
- Robust Performance: Automatic fallback for reliability
|
451 |
+
|
452 |
### 📋 How to Use:
|
453 |
+
1. Select your target language 🌍
|
454 |
+
2. Generate a practice sentence 🎲
|
455 |
+
3. Record yourself reading it aloud 🎤
|
456 |
+
4. Get detailed feedback with advanced accuracy 📊
|
457 |
+
|
458 |
### 🎯 Features:
|
459 |
+
- Dual-pass analysis for comprehensive assessment
|
460 |
+
- Visual highlighting of pronunciation errors
|
461 |
+
- Romanization for Indic scripts
|
462 |
+
- Advanced metrics (Word & Character accuracy)
|
463 |
""")
|
464 |
+
|
465 |
with gr.Row():
|
466 |
with gr.Column(scale=3):
|
467 |
lang_choice = gr.Dropdown(
|
468 |
+
choices=list(LANG_CODES.keys()),
|
469 |
value="Tamil",
|
470 |
label="🌍 Select Language"
|
471 |
)
|
472 |
with gr.Column(scale=1):
|
473 |
gen_btn = gr.Button("🎲 Generate Sentence", variant="primary")
|
474 |
+
|
475 |
intended_display = gr.Textbox(
|
476 |
label="📝 Practice Sentence (Read this aloud)",
|
477 |
placeholder="Click 'Generate Sentence' to get started...",
|
478 |
interactive=False,
|
479 |
lines=3
|
480 |
)
|
481 |
+
|
482 |
audio_input = gr.Audio(
|
483 |
+
sources=["microphone", "upload"],
|
484 |
type="filepath",
|
485 |
label="🎤 Record Your Pronunciation"
|
486 |
)
|
487 |
+
|
488 |
+
analyze_btn = gr.Button("🔍 Analyze with Advanced Models", variant="primary")
|
489 |
+
|
490 |
status_output = gr.Textbox(
|
491 |
+
label="📊 Advanced Analysis Results",
|
492 |
interactive=False,
|
493 |
lines=4
|
494 |
)
|
495 |
+
|
496 |
with gr.Row():
|
497 |
with gr.Column():
|
498 |
pass1_out = gr.Textbox(
|
499 |
+
label="🏆 Primary Model Output",
|
500 |
interactive=False,
|
501 |
lines=2
|
502 |
)
|
503 |
wer_out = gr.Textbox(
|
504 |
+
label="📈 Word Accuracy",
|
505 |
interactive=False
|
506 |
)
|
|
|
507 |
with gr.Column():
|
508 |
pass2_out = gr.Textbox(
|
509 |
+
label="🔧 Specialized Model Comparison",
|
510 |
interactive=False,
|
511 |
lines=2
|
512 |
)
|
513 |
+
|
514 |
cer_out = gr.Textbox(
|
515 |
+
label="📊 Character Accuracy",
|
516 |
interactive=False
|
517 |
)
|
518 |
+
|
519 |
with gr.Accordion("📝 Detailed Visual Feedback", open=True):
|
520 |
gr.Markdown("""
|
521 |
### 🎨 Color Guide:
|
522 |
+
- 🟢 Green: Correctly pronounced words/characters
|
523 |
+
- 🔴 Red: Missing or mispronounced (strikethrough)
|
524 |
+
- 🟠 Orange: Extra words or substitutions
|
525 |
""")
|
526 |
+
diff_html_box = gr.HTML(label="🔍 Word-Level Analysis", show_label=True)
|
527 |
+
char_html_box = gr.HTML(label="🔤 Character-Level Analysis", show_label=True)
|
528 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
529 |
target_display = gr.Textbox(
|
530 |
label="🎯 Reference Text",
|
531 |
interactive=False,
|
532 |
visible=False
|
533 |
)
|
534 |
+
|
|
|
535 |
gen_btn.click(
|
536 |
fn=get_random_sentence,
|
537 |
inputs=[lang_choice],
|
538 |
outputs=[intended_display]
|
539 |
)
|
540 |
+
|
541 |
analyze_btn.click(
|
542 |
fn=compare_pronunciation,
|
543 |
inputs=[audio_input, lang_choice, intended_display],
|
544 |
outputs=[
|
545 |
+
status_output,
|
546 |
+
pass1_out,
|
547 |
+
pass2_out,
|
548 |
+
wer_out,
|
549 |
+
cer_out,
|
550 |
+
diff_html_box,
|
551 |
+
char_html_box,
|
552 |
+
target_display
|
553 |
]
|
554 |
)
|
555 |
+
|
|
|
556 |
lang_choice.change(
|
557 |
fn=get_random_sentence,
|
558 |
inputs=[lang_choice],
|
559 |
outputs=[intended_display]
|
560 |
)
|
561 |
+
|
|
|
562 |
gr.Markdown("""
|
563 |
---
|
564 |
+
### 🏆 Advanced Technology Stack:
|
565 |
+
- Primary ASR: OpenAI Whisper Large v2 (High-performance multilingual model)
|
566 |
+
- Specialized Models:
|
567 |
+
- Tamil: vasista22/whisper-tamil-large-v2
|
568 |
+
- Malayalam: thennal/whisper-medium-ml
|
569 |
+
- English: OpenAI Whisper Base EN
|
570 |
+
- Dual Analysis and Automatic Fallback
|
571 |
+
|
572 |
+
### 🔧 Technical Details:
|
573 |
+
- Metrics: WER and CER
|
574 |
+
- Transliteration: Harvard-Kyoto for Indic scripts
|
575 |
+
- Languages: English, Tamil, Malayalam
|
|
|
|
|
|
|
576 |
""")
|
|
|
577 |
return demo
|
578 |
|
|
|
579 |
if __name__ == "__main__":
|
580 |
+
print("🚀 Starting Advanced Multilingual Pronunciation Trainer...")
|
581 |
+
print(f"🔧 Device: {DEVICE} (index={DEVICE_INDEX})")
|
582 |
print(f"🔧 PyTorch version: {torch.__version__}")
|
583 |
+
print("🏆 Using High-Performance Dual-Model Approach")
|
584 |
+
print("⚡ Automatic model selection with specialized fallbacks")
|
585 |
+
print("📊 Advanced analysis with robust error handling")
|
586 |
print("🎮 GPU functions decorated with @spaces.GPU for HuggingFace Spaces")
|
587 |
+
|
588 |
demo = create_interface()
|
589 |
demo.launch(
|
590 |
share=True,
|
591 |
show_error=True,
|
592 |
server_name="0.0.0.0",
|
593 |
server_port=7860
|
594 |
+
)
|