Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
import random
|
3 |
import difflib
|
4 |
-
import re
|
5 |
-
import unicodedata
|
6 |
import jiwer
|
7 |
import torch
|
8 |
-
from transformers import
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
11 |
import spaces
|
12 |
import gc
|
13 |
|
14 |
# ---------------- CONFIG ---------------- #
|
15 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
|
17 |
-
# Updated model configurations for each language
|
18 |
MODEL_CONFIGS = {
|
19 |
"English": "openai/whisper-large-v2",
|
20 |
"Tamil": "vasista22/whisper-tamil-large-v2",
|
@@ -27,847 +27,364 @@ LANG_CODES = {
|
|
27 |
"Malayalam": "ml"
|
28 |
}
|
29 |
|
30 |
-
LANG_PRIMERS = {
|
31 |
-
"English": ("The transcript should be in English only.",
|
32 |
-
"Write only in English without translation. Example: This is an English sentence."),
|
33 |
-
"Tamil": ("நகல் தமிழ் எழுத்துக்களில் மட்டும் இருக்க வேண்டும்.",
|
34 |
-
"தமிழ் எழுத்துக்களில் மட்டும் எழுதவும், மொழிபெயர்ப்பு செய்யக்கூடாது. உதாரணம்: இது ஒரு தமிழ் வாக்கியம்."),
|
35 |
-
"Malayalam": ("ട്രാൻസ്ഖ്രിപ്റ്റ് മലയാള ലിപിയിൽ ആയിരിക്കണം.",
|
36 |
-
"മലയാള ലിപിയിൽ മാത്രം എഴുതുക, വിവർത്തനം ചെയ്യരുത്. ഉദാഹരണം: ഇതൊരു മലയാള വാക്യമാണ്. എനിക്ക് മലയാളം അറിയാം.")
|
37 |
-
}
|
38 |
-
|
39 |
-
SCRIPT_PATTERNS = {
|
40 |
-
"Tamil": re.compile(r"[-]"),
|
41 |
-
"Malayalam": re.compile(r"[ഀ-ൿ]"),
|
42 |
-
"English": re.compile(r"[A-Za-z]")
|
43 |
-
}
|
44 |
-
|
45 |
SENTENCE_BANK = {
|
46 |
"English": [
|
47 |
"The sun sets over the horizon.",
|
48 |
"Learning languages is fun.",
|
49 |
"I like to drink coffee in the morning.",
|
50 |
"Technology helps us communicate better.",
|
51 |
-
"Reading books expands our knowledge."
|
52 |
-
"Music brings people together.",
|
53 |
-
"Exercise keeps us healthy and strong.",
|
54 |
-
"Cooking is both art and science."
|
55 |
],
|
56 |
"Tamil": [
|
57 |
"இன்று நல்ல வானிலை உள்ளது.",
|
58 |
"நான் தமிழ் கற்றுக்கொண்டு இருக்கிறேன்.",
|
59 |
"எனக்கு புத்தகம் படிக்க விருப்பம்.",
|
60 |
"தமிழ் மொழி மிகவும் அழகானது.",
|
61 |
-
"
|
62 |
-
"எனக்கு இசை கேட்க மிகவும் பிடிக்கும்.",
|
63 |
-
"அன்னை தமிழ் எங்கள் தாய்மொழி.",
|
64 |
-
"நல்ல உணவு உடல் நலத்திற்கு அவசியம்."
|
65 |
],
|
66 |
"Malayalam": [
|
67 |
"എനിക്ക് മലയാളം വളരെ ഇഷ്ടമാണ്.",
|
68 |
"ഇന്ന് മഴപെയ്യുന്നു.",
|
69 |
"ഞാൻ പുസ്തകം വായിക്കുന്നു.",
|
70 |
"കേരളം എന്റെ സ്വന്തം നാടാണ്.",
|
71 |
-
"
|
72 |
-
"സംഗീതം ജീവിതത്തിന്റെ ഭാഗമാണ്.",
|
73 |
-
"നല്ല ആരോഗ്യം വളരെ പ്രധാനമാണ്.",
|
74 |
-
"വിദ്യാഭ്യാസം ജീവിതത്തിൽ അത്യാവശ്യമാണ്."
|
75 |
]
|
76 |
}
|
77 |
|
78 |
-
# ----------------
|
79 |
-
|
80 |
-
|
81 |
-
"""
|
82 |
-
Generalizable transliteration to natural romanization (Thanglish/Manglish)
|
83 |
-
using systematic phonetic rules instead of manual dictionaries
|
84 |
-
"""
|
85 |
-
if not text or not text.strip():
|
86 |
-
return ""
|
87 |
-
|
88 |
-
if lang_choice == "English":
|
89 |
-
return text
|
90 |
-
|
91 |
-
try:
|
92 |
-
# Step 1: Convert to ISO 15919 (more systematic than IAST)
|
93 |
-
if lang_choice == "Tamil":
|
94 |
-
iso_text = transliterate(text, sanscript.TAMIL, sanscript.ISO)
|
95 |
-
elif lang_choice == "Malayalam":
|
96 |
-
iso_text = transliterate(text, sanscript.MALAYALAM, sanscript.ISO)
|
97 |
-
else:
|
98 |
-
return text
|
99 |
-
|
100 |
-
# Step 2: Apply systematic phonetic conversion
|
101 |
-
romanized = apply_systematic_phonetic_rules(iso_text)
|
102 |
-
|
103 |
-
# Step 3: Apply language-specific natural patterns
|
104 |
-
romanized = apply_natural_language_patterns(romanized, lang_choice)
|
105 |
-
|
106 |
-
# Step 4: Final phonetic cleanup and flow optimization
|
107 |
-
romanized = optimize_natural_flow(romanized)
|
108 |
-
|
109 |
-
return romanized if romanized else text
|
110 |
-
|
111 |
-
except Exception as e:
|
112 |
-
print(f"Transliteration error: {e}")
|
113 |
-
return text
|
114 |
|
115 |
-
def
|
116 |
-
"""
|
117 |
-
|
118 |
-
rather than manual character mappings
|
119 |
-
"""
|
120 |
-
result = iso_text
|
121 |
-
|
122 |
-
# === VOWEL SYSTEM ===
|
123 |
-
# Long vowels -> natural doubling (how native speakers type)
|
124 |
-
vowel_rules = [
|
125 |
-
(r'ā', 'aa'), # long a
|
126 |
-
(r'ī', 'ii'), # long i
|
127 |
-
(r'ū', 'uu'), # long u
|
128 |
-
(r'ē', 'ee'), # long e (some prefer 'e', but 'ee' is clearer)
|
129 |
-
(r'ō', 'oo'), # long o (some prefer 'o', but 'oo' is clearer)
|
130 |
-
(r'ai', 'ai'), # diphthong ai
|
131 |
-
(r'au', 'au'), # diphthong au
|
132 |
-
(r'r̥', 'ru'), # vocalic r
|
133 |
-
(r'r̥̄', 'ruu'), # long vocalic r
|
134 |
-
(r'l̥', 'lu'), # vocalic l
|
135 |
-
(r'l̥̄', 'luu'), # long vocalic l
|
136 |
-
]
|
137 |
-
|
138 |
-
# === CONSONANT SYSTEM ===
|
139 |
-
# Systematic consonant conversion based on phonetic properties
|
140 |
-
consonant_rules = [
|
141 |
-
# Nasals - context-sensitive
|
142 |
-
(r'ṅ', 'ng'), # velar nasal
|
143 |
-
(r'ñ', 'nj'), # palatal nasal (natural in South Indian typing)
|
144 |
-
(r'ṇ', 'n'), # retroflex nasal -> dental (natural simplification)
|
145 |
-
(r'n̆', 'n'), # any other nasal variants
|
146 |
-
|
147 |
-
# Stops - systematic by place of articulation
|
148 |
-
(r'([kg])h', r'\1h'), # keep aspirated velars
|
149 |
-
(r'([cj])h', r'\1h'), # keep aspirated palatals
|
150 |
-
(r'([ṭḍ])h', r'th'), # retroflex aspirated -> dental aspirated (natural)
|
151 |
-
(r'([td])h', r'\1h'), # keep dental aspirated
|
152 |
-
(r'([pb])h', r'\1h'), # keep labial aspirated
|
153 |
-
|
154 |
-
# Retroflex simplification (how native speakers naturally type)
|
155 |
-
(r'ṭ', 't'), # retroflex t -> dental t
|
156 |
-
(r'ḍ', 'd'), # retroflex d -> dental d
|
157 |
-
(r'ṇ', 'n'), # retroflex n -> dental n (already covered above)
|
158 |
-
|
159 |
-
# Liquids and approximants
|
160 |
-
(r'ṟ', 'r'), # Tamil/Malayalam retroflex r -> simple r
|
161 |
-
(r'ṛ', 'r'), # any other retroflex r -> simple r
|
162 |
-
(r'ḷ', 'l'), # retroflex l -> simple l (except for special cases)
|
163 |
-
(r'ḻ', 'zh'), # Tamil/Malayalam special l -> zh (important!)
|
164 |
-
|
165 |
-
# Sibilants - systematic
|
166 |
-
(r'ś', 'sh'), # palatal sibilant
|
167 |
-
(r'ṣ', 'sh'), # retroflex sibilant
|
168 |
-
(r's', 's'), # dental sibilant (unchanged)
|
169 |
-
|
170 |
-
# Fricatives and others
|
171 |
-
(r'ḥ', 'h'), # visarga -> simple h
|
172 |
-
(r'ḫ', 'h'), # any other h variants
|
173 |
-
(r'×', ''), # multiplication sign sometimes appears
|
174 |
-
|
175 |
-
# Common combinations (compound consonants)
|
176 |
-
(r'kṣ', 'ksh'), # kṣa combination
|
177 |
-
(r'jñ', 'gn'), # jña combination (natural pronunciation)
|
178 |
-
(r'śr', 'shr'), # śra combination
|
179 |
-
]
|
180 |
-
|
181 |
-
# Apply vowel rules first
|
182 |
-
for pattern, replacement in vowel_rules:
|
183 |
-
result = re.sub(pattern, replacement, result)
|
184 |
-
|
185 |
-
# Apply consonant rules
|
186 |
-
for pattern, replacement in consonant_rules:
|
187 |
-
result = re.sub(pattern, replacement, result)
|
188 |
-
|
189 |
-
return result
|
190 |
-
|
191 |
-
def apply_natural_language_patterns(text, lang_choice):
|
192 |
-
"""
|
193 |
-
Apply language-specific patterns that reflect how native speakers
|
194 |
-
naturally romanize their languages
|
195 |
-
"""
|
196 |
-
if lang_choice == "Tamil":
|
197 |
-
return apply_tamil_natural_patterns(text)
|
198 |
-
elif lang_choice == "Malayalam":
|
199 |
-
return apply_malayalam_natural_patterns(text)
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
def apply_tamil_natural_patterns(text):
|
204 |
-
"""Tamil-specific natural romanization patterns"""
|
205 |
-
|
206 |
-
tamil_patterns = [
|
207 |
-
# Tamil-specific sounds
|
208 |
-
(r'ḻ', 'zh'), # Tamil zh sound (crucial)
|
209 |
-
(r'ṟ', 'r'), # Tamil r sound
|
210 |
-
|
211 |
-
# Natural doubling patterns in Tamil
|
212 |
-
(r'([kgcjṭḍtdpb])\1', r'\1\1'), # Keep natural gemination
|
213 |
-
|
214 |
-
# Tamil word-final patterns
|
215 |
-
(r'um$', 'um'), # Tamil suffix -um
|
216 |
-
(r'an$', 'an'), # Tamil suffix -an
|
217 |
-
(r'al$', 'al'), # Tamil suffix -al
|
218 |
-
|
219 |
-
# Natural vowel harmony adjustments
|
220 |
-
(r'([aeiou])u([mnlr])', r'\1\2u'), # Vowel + u + liquid/nasal
|
221 |
-
]
|
222 |
-
|
223 |
-
for pattern, replacement in tamil_patterns:
|
224 |
-
text = re.sub(pattern, replacement, text)
|
225 |
-
|
226 |
-
return text
|
227 |
-
|
228 |
-
def apply_malayalam_natural_patterns(text):
|
229 |
-
"""Malayalam-specific natural romanization patterns"""
|
230 |
-
|
231 |
-
malayalam_patterns = [
|
232 |
-
# Malayalam-specific sounds
|
233 |
-
(r'ḻ', 'zh'), # Malayalam zh sound (very important!)
|
234 |
-
(r'ṟ', 'r'), # Malayalam r sound
|
235 |
-
|
236 |
-
# Natural gemination in Malayalam
|
237 |
-
(r'([kgcjṭḍtdpb])\1', r'\1\1'), # Keep natural gemination
|
238 |
-
|
239 |
-
# Malayalam word patterns
|
240 |
-
(r'aanu$', 'aanu'), # Malayalam copula ending
|
241 |
-
(r'unnu$', 'unnu'), # Malayalam verb ending
|
242 |
-
(r'aam$', 'aam'), # Malayalam suffix
|
243 |
-
|
244 |
-
# Natural flow adjustments for Malayalam
|
245 |
-
(r'([aeiou])([mnlr])([aeiou])', r'\1\2\3'), # Vowel-liquid-vowel unchanged
|
246 |
-
|
247 |
-
# Handle Malayalam specific consonant clusters
|
248 |
-
(r'ngh', 'ngh'), # Keep ngh clusters
|
249 |
-
(r'mph', 'mph'), # Keep mph clusters
|
250 |
-
]
|
251 |
-
|
252 |
-
for pattern, replacement in malayalam_patterns:
|
253 |
-
text = re.sub(pattern, replacement, text)
|
254 |
-
|
255 |
-
return text
|
256 |
-
|
257 |
-
def optimize_natural_flow(text):
|
258 |
-
"""
|
259 |
-
Final optimization for natural reading flow -
|
260 |
-
how native speakers would actually type/read
|
261 |
-
"""
|
262 |
-
|
263 |
-
# Remove any remaining diacritical marks using Unicode normalization
|
264 |
-
text = ''.join(c for c in unicodedata.normalize('NFD', text)
|
265 |
-
if unicodedata.category(c) != 'Mn')
|
266 |
-
|
267 |
-
# Natural flow optimization rules
|
268 |
-
flow_rules = [
|
269 |
-
# Vowel optimization for readability
|
270 |
-
(r'([aeiou])\1{2,}', r'\1\1'), # Max 2 repeated vowels
|
271 |
-
(r'aaa+', 'aa'), # Multiple a's -> aa
|
272 |
-
(r'iii+', 'ii'), # Multiple i's -> ii
|
273 |
-
(r'uuu+', 'uu'), # Multiple u's -> uu
|
274 |
-
(r'eee+', 'ee'), # Multiple e's -> ee
|
275 |
-
(r'ooo+', 'oo'), # Multiple o's -> oo
|
276 |
-
|
277 |
-
# Consonant cluster optimization
|
278 |
-
(r'([bcdfghjklmnpqrstvwxyz])\1{2,}', r'\1\1'), # Max 2 repeated consonants
|
279 |
-
|
280 |
-
# Natural word boundaries and spacing
|
281 |
-
(r'\s+', ' '), # Normalize spaces
|
282 |
-
(r'^\s+|\s+$', ''), # Trim leading/trailing spaces
|
283 |
-
|
284 |
-
# Handle common awkward sequences
|
285 |
-
(r'([aeiou])h([aeiou])', r'\1\2'), # Remove h between vowels if awkward
|
286 |
-
(r'([bcdfghjklmnpqrstvwxyz])y([bcdfghjklmnpqrstvwxyz])', r'\1i\2'), # y->i in consonant clusters
|
287 |
-
|
288 |
-
# Ensure readability of common endings
|
289 |
-
(r'([mnlr])u$', r'\1u'), # Keep natural endings
|
290 |
-
(r'([kgt])u$', r'\1u'), # Keep natural endings
|
291 |
-
]
|
292 |
-
|
293 |
-
for pattern, replacement in flow_rules:
|
294 |
-
text = re.sub(pattern, replacement, text)
|
295 |
-
|
296 |
-
return text
|
297 |
-
|
298 |
-
def enhanced_phonetic_similarity_check(intended_roman, actual_roman):
|
299 |
-
"""
|
300 |
-
Enhanced similarity check that accounts for natural variations
|
301 |
-
in how people might romanize the same sounds
|
302 |
-
"""
|
303 |
-
|
304 |
-
# Define phonetically equivalent mappings
|
305 |
-
phonetic_equivalents = {
|
306 |
-
'aa': ['a', 'aa'],
|
307 |
-
'ii': ['i', 'ii'],
|
308 |
-
'uu': ['u', 'uu'],
|
309 |
-
'ee': ['e', 'ee'],
|
310 |
-
'oo': ['o', 'oo'],
|
311 |
-
'zh': ['zh', 'z', 'l'], # Common variations for zh sound
|
312 |
-
'sh': ['sh', 's'], # sh vs s variations
|
313 |
-
'ch': ['ch', 'c'], # ch vs c variations
|
314 |
-
'th': ['th', 't'], # th vs t variations
|
315 |
-
'dh': ['dh', 'd'], # dh vs d variations
|
316 |
-
'ksh': ['ksh', 'ksh', 'ks'], # ksh variations
|
317 |
-
'gn': ['gn', 'ny', 'nj'], # gn/ny/nj variations
|
318 |
-
}
|
319 |
-
|
320 |
-
# Normalize both strings for comparison
|
321 |
-
intended_normalized = normalize_for_comparison(intended_roman, phonetic_equivalents)
|
322 |
-
actual_normalized = normalize_for_comparison(actual_roman, phonetic_equivalents)
|
323 |
-
|
324 |
-
return intended_normalized, actual_normalized
|
325 |
-
|
326 |
-
def normalize_for_comparison(text, equivalents):
|
327 |
-
"""Normalize text for phonetic comparison"""
|
328 |
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
for variant in variants:
|
334 |
-
text = text.replace(variant, canonical)
|
335 |
-
|
336 |
-
return text
|
337 |
-
|
338 |
-
# ---------------- MEMORY OPTIMIZED MODEL LOADING ---------------- #
|
339 |
-
# Store only currently loaded model to save memory
|
340 |
-
current_model = {"language": None, "model": None, "processor": None}
|
341 |
-
|
342 |
-
def load_model_for_language(language_choice):
|
343 |
-
"""Load model on-demand and clear previous model from memory"""
|
344 |
-
global current_model
|
345 |
-
|
346 |
-
# If same language is already loaded, return current model
|
347 |
-
if current_model["language"] == language_choice and current_model["model"] is not None:
|
348 |
-
return current_model["model"], current_model["processor"]
|
349 |
-
|
350 |
-
# Clear previous model from memory
|
351 |
-
if current_model["model"] is not None:
|
352 |
-
del current_model["model"]
|
353 |
-
del current_model["processor"]
|
354 |
gc.collect()
|
355 |
if DEVICE == "cuda":
|
356 |
torch.cuda.empty_cache()
|
357 |
|
358 |
# Load new model
|
359 |
model_id = MODEL_CONFIGS[language_choice]
|
360 |
-
print(f"Loading
|
361 |
|
362 |
try:
|
363 |
model = WhisperForConditionalGeneration.from_pretrained(
|
364 |
-
model_id,
|
365 |
-
torch_dtype=torch.float32
|
366 |
).to(DEVICE)
|
367 |
processor = WhisperProcessor.from_pretrained(model_id)
|
368 |
|
369 |
-
|
370 |
"language": language_choice,
|
371 |
"model": model,
|
372 |
"processor": processor
|
373 |
}
|
374 |
|
375 |
-
print(f"✓
|
376 |
return model, processor
|
377 |
|
378 |
except Exception as e:
|
379 |
-
print(f"✗ Error loading
|
380 |
-
# Fallback to base
|
381 |
-
print(f"Falling back to openai/whisper-base for {language_choice}")
|
382 |
model = WhisperForConditionalGeneration.from_pretrained(
|
383 |
-
"openai/whisper-base",
|
384 |
-
torch_dtype=torch.float32
|
385 |
).to(DEVICE)
|
386 |
processor = WhisperProcessor.from_pretrained("openai/whisper-base")
|
387 |
|
388 |
-
|
389 |
"language": language_choice,
|
390 |
"model": model,
|
391 |
"processor": processor
|
392 |
}
|
393 |
-
|
394 |
return model, processor
|
395 |
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
def get_random_sentence_with_transliteration(language_choice):
|
401 |
-
sentence = random.choice(SENTENCE_BANK[language_choice])
|
402 |
-
if language_choice in ["Tamil", "Malayalam"]:
|
403 |
-
# Use the new improved transliteration system
|
404 |
-
transliteration = transliterate_to_natural_roman(sentence, language_choice)
|
405 |
-
# Combine sentence with transliteration in the same box
|
406 |
-
combined_sentence = f"{sentence}\n\n🔤 {transliteration}"
|
407 |
-
return combined_sentence, transliteration
|
408 |
-
else:
|
409 |
-
return sentence, ""
|
410 |
-
|
411 |
-
def is_script(text, lang_name):
|
412 |
-
pattern = SCRIPT_PATTERNS.get(lang_name)
|
413 |
-
return bool(pattern.search(text)) if pattern else True
|
414 |
-
|
415 |
-
def transliterate_to_hk(text, lang_choice):
|
416 |
-
"""Improved transliteration with better handling"""
|
417 |
-
if not text or not text.strip():
|
418 |
-
return ""
|
419 |
|
420 |
-
|
421 |
-
"
|
422 |
-
|
423 |
-
|
424 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
425 |
|
426 |
-
|
427 |
-
|
|
|
428 |
|
429 |
try:
|
430 |
-
#
|
431 |
-
|
432 |
-
|
433 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
except Exception as e:
|
435 |
-
print(f"
|
436 |
return text
|
437 |
|
438 |
-
#
|
439 |
-
def transliterate_to_simple_roman(text, lang_choice):
|
440 |
-
"""
|
441 |
-
IMPROVED VERSION: Natural transliteration using systematic phonetic rules
|
442 |
-
"""
|
443 |
-
return transliterate_to_natural_roman(text, lang_choice)
|
444 |
|
445 |
@spaces.GPU
|
446 |
-
def
|
447 |
-
|
448 |
-
model, processor =
|
449 |
lang_code = LANG_CODES[language_choice]
|
450 |
|
451 |
-
# Load
|
452 |
import librosa
|
453 |
audio, sr = librosa.load(audio_path, sr=16000)
|
454 |
|
455 |
-
# Process audio
|
456 |
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
|
|
|
457 |
|
458 |
-
#
|
459 |
-
model_dtype = next(model.parameters()).dtype
|
460 |
-
input_features = input_features.to(device=DEVICE, dtype=model_dtype)
|
461 |
-
|
462 |
-
# Generate transcription with fallback for different model capabilities
|
463 |
with torch.no_grad():
|
464 |
try:
|
465 |
-
# Try with forced decoder ids first (standard Whisper models)
|
466 |
forced_decoder_ids = processor.get_decoder_prompt_ids(language=lang_code, task="transcribe")
|
467 |
predicted_ids = model.generate(
|
468 |
input_features,
|
469 |
forced_decoder_ids=forced_decoder_ids,
|
470 |
max_length=448,
|
471 |
-
num_beams=
|
472 |
-
temperature=
|
473 |
-
do_sample=temperature > 0,
|
474 |
)
|
475 |
-
except
|
476 |
-
# Fallback for models that don't support forced_decoder_ids (like some fine-tuned models)
|
477 |
-
print(f"Fallback generation for {language_choice}: {e}")
|
478 |
predicted_ids = model.generate(
|
479 |
input_features,
|
480 |
max_length=448,
|
481 |
-
num_beams=
|
482 |
-
temperature=
|
483 |
-
do_sample=temperature > 0,
|
484 |
)
|
485 |
|
486 |
-
# Decode the transcription
|
487 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
488 |
return transcription.strip()
|
489 |
|
490 |
-
|
491 |
-
"""Remove punctuation and normalize word for comparison"""
|
492 |
-
import string
|
493 |
-
# Remove punctuation and whitespace
|
494 |
-
return word.strip().translate(str.maketrans('', '', string.punctuation)).lower()
|
495 |
|
496 |
-
def
|
497 |
-
"""
|
498 |
-
|
499 |
-
|
|
|
500 |
|
501 |
-
#
|
502 |
-
intended_roman = transliterate_to_natural_roman(intended, lang_choice)
|
503 |
-
actual_roman = transliterate_to_natural_roman(actual, lang_choice)
|
504 |
-
|
505 |
-
# Split into words for comparison
|
506 |
intended_words = intended.strip().split()
|
507 |
actual_words = actual.strip().split()
|
508 |
-
intended_roman_words = intended_roman.strip().split()
|
509 |
-
actual_roman_words = actual_roman.strip().split()
|
510 |
-
|
511 |
-
# Calculate accuracy with phonetic awareness
|
512 |
-
correct_words = 0
|
513 |
-
total_words = len(intended_words)
|
514 |
-
|
515 |
-
# Create word-by-word comparison table
|
516 |
-
feedback_html = """
|
517 |
-
<div style='font-family: Arial, sans-serif; padding: 20px; margin: 10px 0;'>
|
518 |
-
<h3 style='color: #2c3e50; margin-bottom: 20px; text-align: center;'>📊 Enhanced Pronunciation Analysis</h3>
|
519 |
-
"""
|
520 |
-
|
521 |
-
# Overview table with improved romanization
|
522 |
-
feedback_html += """
|
523 |
-
<div style='margin-bottom: 25px;'>
|
524 |
-
<h4 style='color: #34495e; margin-bottom: 15px;'>📝 Text Comparison (Improved Natural Romanization)</h4>
|
525 |
-
<table style='width: 100%; border-collapse: collapse; border: 2px solid #ddd;'>
|
526 |
-
<thead>
|
527 |
-
<tr style='border-bottom: 2px solid #ddd;'>
|
528 |
-
<th style='padding: 15px; text-align: left; font-weight: bold; color: #2c3e50; border-right: 1px solid #ddd;'>Type</th>
|
529 |
-
<th style='padding: 15px; text-align: left; font-weight: bold; color: #2c3e50; border-right: 1px solid #ddd;'>Original Text</th>
|
530 |
-
<th style='padding: 15px; text-align: left; font-weight: bold; color: #2c3e50;'>Natural Romanization</th>
|
531 |
-
</tr>
|
532 |
-
</thead>
|
533 |
-
<tbody>
|
534 |
-
<tr style='border-bottom: 1px solid #ddd;'>
|
535 |
-
<td style='padding: 15px; font-weight: bold; color: #27ae60; border-right: 1px solid #ddd;'>🎯 Target</td>
|
536 |
-
<td style='padding: 15px; font-family: monospace; font-size: 18px; border-right: 1px solid #ddd;'>{}</td>
|
537 |
-
<td style='padding: 15px; font-family: monospace; font-size: 16px; color: #555;'>{}</td>
|
538 |
-
</tr>
|
539 |
-
<tr>
|
540 |
-
<td style='padding: 15px; font-weight: bold; color: #e67e22; border-right: 1px solid #ddd;'>🗣️ You Said</td>
|
541 |
-
<td style='padding: 15px; font-family: monospace; font-size: 18px; border-right: 1px solid #ddd;'>{}</td>
|
542 |
-
<td style='padding: 15px; font-family: monospace; font-size: 16px; color: #555;'>{}</td>
|
543 |
-
</tr>
|
544 |
-
</tbody>
|
545 |
-
</table>
|
546 |
-
</div>
|
547 |
-
""".format(intended, intended_roman, actual, actual_roman)
|
548 |
-
|
549 |
-
# Enhanced word-by-word analysis with phonetic awareness
|
550 |
-
feedback_html += """
|
551 |
-
<div style='margin-bottom: 25px;'>
|
552 |
-
<h4 style='color: #34495e; margin-bottom: 15px;'>🔍 Enhanced Word-by-Word Analysis</h4>
|
553 |
-
<table style='width: 100%; border-collapse: collapse; border: 2px solid #ddd;'>
|
554 |
-
<thead>
|
555 |
-
<tr style='border-bottom: 2px solid #ddd;'>
|
556 |
-
<th style='padding: 12px; text-align: center; font-weight: bold; color: #2c3e50; border-right: 1px solid #ddd;'>#</th>
|
557 |
-
<th style='padding: 12px; text-align: left; font-weight: bold; color: #2c3e50; border-right: 1px solid #ddd;'>Expected Word</th>
|
558 |
-
<th style='padding: 12px; text-align: left; font-weight: bold; color: #2c3e50; border-right: 1px solid #ddd;'>What You Said</th>
|
559 |
-
<th style='padding: 12px; text-align: center; font-weight: bold; color: #2c3e50; border-right: 1px solid #ddd;'>Phonetic Match</th>
|
560 |
-
<th style='padding: 12px; text-align: center; font-weight: bold; color: #2c3e50;'>Result</th>
|
561 |
-
</tr>
|
562 |
-
</thead>
|
563 |
-
<tbody>
|
564 |
-
"""
|
565 |
|
566 |
-
#
|
567 |
sm = difflib.SequenceMatcher(None, intended_words, actual_words)
|
568 |
-
|
569 |
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
word_index += 1
|
575 |
-
correct_words += 1
|
576 |
-
roman_word = intended_roman_words[i1 + idx] if (i1 + idx) < len(intended_roman_words) else ""
|
577 |
-
actual_word = actual_words[j1 + idx] if (j1 + idx) < len(actual_words) else ""
|
578 |
-
actual_roman_word = actual_roman_words[j1 + idx] if (j1 + idx) < len(actual_roman_words) else ""
|
579 |
-
|
580 |
-
feedback_html += f"""
|
581 |
-
<tr style='border-bottom: 1px solid #eee;'>
|
582 |
-
<td style='padding: 12px; text-align: center; font-weight: bold; color: #666; border-right: 1px solid #ddd;'>{word_index}</td>
|
583 |
-
<td style='padding: 12px; border-right: 1px solid #ddd;'>
|
584 |
-
<div style='font-family: monospace; font-size: 16px; margin-bottom: 4px;'>{word}</div>
|
585 |
-
<div style='font-size: 13px; color: #888;'>({roman_word})</div>
|
586 |
-
</td>
|
587 |
-
<td style='padding: 12px; border-right: 1px solid #ddd;'>
|
588 |
-
<div style='font-family: monospace; font-size: 16px; margin-bottom: 4px; color: #27ae60;'>{actual_word}</div>
|
589 |
-
<div style='font-size: 13px; color: #888;'>({actual_roman_word})</div>
|
590 |
-
</td>
|
591 |
-
<td style='padding: 12px; text-align: center; border-right: 1px solid #ddd;'>
|
592 |
-
<span style='color: #27ae60; font-weight: bold;'>Perfect</span>
|
593 |
-
</td>
|
594 |
-
<td style='padding: 12px; text-align: center;'>
|
595 |
-
<span style='color: #27ae60; font-weight: bold; font-size: 20px;'>✓</span>
|
596 |
-
<div style='font-size: 12px; color: #27ae60; margin-top: 2px;'>Exact</div>
|
597 |
-
</td>
|
598 |
-
</tr>
|
599 |
-
"""
|
600 |
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
phonetic_color = "#f39c12"
|
619 |
-
result_icon = "≈"
|
620 |
-
result_text = "Similar"
|
621 |
-
correct_words += 0.8 # Partial credit
|
622 |
-
elif similarity_ratio > 0.6: # Moderate similarity
|
623 |
-
phonetic_match = "Close"
|
624 |
-
phonetic_color = "#e67e22"
|
625 |
-
result_icon = "~"
|
626 |
-
result_text = "Close"
|
627 |
-
correct_words += 0.5 # Partial credit
|
628 |
-
else:
|
629 |
-
phonetic_match = "Different"
|
630 |
-
phonetic_color = "#e74c3c"
|
631 |
-
result_icon = "✗"
|
632 |
-
result_text = "Different"
|
633 |
-
else:
|
634 |
-
phonetic_match = "Different"
|
635 |
-
phonetic_color = "#e74c3c"
|
636 |
-
result_icon = "✗"
|
637 |
-
result_text = "Different"
|
638 |
-
|
639 |
-
feedback_html += f"""
|
640 |
-
<tr style='border-bottom: 1px solid #eee;'>
|
641 |
-
<td style='padding: 12px; text-align: center; font-weight: bold; color: #666; border-right: 1px solid #ddd;'>{word_index}</td>
|
642 |
-
<td style='padding: 12px; border-right: 1px solid #ddd;'>
|
643 |
-
<div style='font-family: monospace; font-size: 16px; margin-bottom: 4px;'>{expected_word}</div>
|
644 |
-
<div style='font-size: 13px; color: #888;'>({expected_roman})</div>
|
645 |
-
</td>
|
646 |
-
<td style='padding: 12px; border-right: 1px solid #ddd;'>
|
647 |
-
<div style='font-family: monospace; font-size: 16px; margin-bottom: 4px; color: {phonetic_color};'>{actual_word}</div>
|
648 |
-
<div style='font-size: 13px; color: #888;'>({actual_roman_word})</div>
|
649 |
-
</td>
|
650 |
-
<td style='padding: 12px; text-align: center; border-right: 1px solid #ddd;'>
|
651 |
-
<span style='color: {phonetic_color}; font-weight: bold;'>{phonetic_match}</span>
|
652 |
-
</td>
|
653 |
-
<td style='padding: 12px; text-align: center;'>
|
654 |
-
<span style='color: {phonetic_color}; font-weight: bold; font-size: 20px;'>{result_icon}</span>
|
655 |
-
<div style='font-size: 12px; color: {phonetic_color}; margin-top: 2px;'>{result_text}</div>
|
656 |
-
</td>
|
657 |
-
</tr>
|
658 |
-
"""
|
659 |
-
|
660 |
-
elif tag == 'delete':
|
661 |
-
# Missing words
|
662 |
-
for idx, word in enumerate(intended_words[i1:i2]):
|
663 |
-
word_index += 1
|
664 |
-
roman_word = intended_roman_words[i1 + idx] if (i1 + idx) < len(intended_roman_words) else ""
|
665 |
-
feedback_html += f"""
|
666 |
-
<tr style='border-bottom: 1px solid #eee;'>
|
667 |
-
<td style='padding: 12px; text-align: center; font-weight: bold; color: #666; border-right: 1px solid #ddd;'>{word_index}</td>
|
668 |
-
<td style='padding: 12px; border-right: 1px solid #ddd;'>
|
669 |
-
<div style='font-family: monospace; font-size: 16px; margin-bottom: 4px;'>{word}</div>
|
670 |
-
<div style='font-size: 13px; color: #888;'>({roman_word})</div>
|
671 |
-
</td>
|
672 |
-
<td style='padding: 12px; color: #f39c12; font-style: italic; border-right: 1px solid #ddd;'>
|
673 |
-
<em>Not spoken</em>
|
674 |
-
</td>
|
675 |
-
<td style='padding: 12px; text-align: center; border-right: 1px solid #ddd;'>
|
676 |
-
<span style='color: #f39c12; font-weight: bold;'>Missing</span>
|
677 |
-
</td>
|
678 |
-
<td style='padding: 12px; text-align: center;'>
|
679 |
-
<span style='color: #f39c12; font-weight: bold; font-size: 20px;'>⚠</span>
|
680 |
-
<div style='font-size: 12px; color: #f39c12; margin-top: 2px;'>Missing</div>
|
681 |
-
</td>
|
682 |
-
</tr>
|
683 |
-
"""
|
684 |
-
|
685 |
-
elif tag == 'insert':
|
686 |
-
# Extra words
|
687 |
-
for idx, word in enumerate(actual_words[j1:j2]):
|
688 |
-
actual_roman_word = actual_roman_words[j1 + idx] if (j1 + idx) < len(actual_roman_words) else ""
|
689 |
-
feedback_html += f"""
|
690 |
-
<tr style='border-bottom: 1px solid #eee;'>
|
691 |
-
<td style='padding: 12px; text-align: center; font-weight: bold; color: #666; border-right: 1px solid #ddd;'>+</td>
|
692 |
-
<td style='padding: 12px; color: #9b59b6; font-style: italic; border-right: 1px solid #ddd;'>
|
693 |
-
<em>Not expected</em>
|
694 |
-
</td>
|
695 |
-
<td style='padding: 12px; border-right: 1px solid #ddd;'>
|
696 |
-
<div style='font-family: monospace; font-size: 16px; margin-bottom: 4px; color: #9b59b6;'>{word}</div>
|
697 |
-
<div style='font-size: 13px; color: #888;'>({actual_roman_word})</div>
|
698 |
-
</td>
|
699 |
-
<td style='padding: 12px; text-align: center; border-right: 1px solid #ddd;'>
|
700 |
-
<span style='color: #9b59b6; font-weight: bold;'>Extra</span>
|
701 |
-
</td>
|
702 |
-
<td style='padding: 12px; text-align: center;'>
|
703 |
-
<span style='color: #9b59b6; font-weight: bold; font-size: 20px;'>+</span>
|
704 |
-
<div style='font-size: 12px; color: #9b59b6; margin-top: 2px;'>Extra</div>
|
705 |
-
</td>
|
706 |
-
</tr>
|
707 |
-
"""
|
708 |
-
|
709 |
-
feedback_html += """
|
710 |
-
</tbody>
|
711 |
</table>
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
# Enhanced summary section
|
719 |
-
feedback_html += f"""
|
720 |
-
<div style='background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 25px; border-radius: 12px; text-align: center; margin-top: 20px;'>
|
721 |
-
<h4 style='margin: 0 0 20px 0; font-size: 24px;'>🎯 Enhanced Pronunciation Score</h4>
|
722 |
-
<div style='display: flex; justify-content: space-around; flex-wrap: wrap; gap: 20px;'>
|
723 |
-
<div style='background: rgba(255,255,255,0.15); padding: 20px; border-radius: 12px; min-width: 160px;'>
|
724 |
-
<div style='font-size: 40px; font-weight: bold; margin-bottom: 8px;'>{accuracy:.0f}%</div>
|
725 |
-
<div style='font-size: 16px; opacity: 0.9;'>Phonetic Accuracy</div>
|
726 |
-
</div>
|
727 |
-
<div style='background: rgba(255,255,255,0.15); padding: 20px; border-radius: 12px; min-width: 160px;'>
|
728 |
-
<div style='font-size: 40px; font-weight: bold; margin-bottom: 8px;'>{correct_words:.1f}/{total_words}</div>
|
729 |
-
<div style='font-size: 16px; opacity: 0.9;'>Words Matched</div>
|
730 |
</div>
|
731 |
</div>
|
732 |
-
|
733 |
-
✨ Now with enhanced phonetic matching for better accuracy!
|
734 |
-
</div>
|
735 |
"""
|
736 |
|
737 |
-
# Enhanced motivational message
|
738 |
-
if accuracy >= 95:
|
739 |
-
feedback_html += "<div style='margin-top: 15px; font-size: 18px;'><span>🎉 Outstanding! Perfect natural pronunciation!</span></div>"
|
740 |
-
elif accuracy >= 85:
|
741 |
-
feedback_html += "<div style='margin-top: 15px; font-size: 18px;'><span>🌟 Excellent! Very natural sounding!</span></div>"
|
742 |
-
elif accuracy >= 70:
|
743 |
-
feedback_html += "<div style='margin-top: 15px; font-size: 18px;'><span>👍 Good job! Your pronunciation is improving!</span></div>"
|
744 |
-
elif accuracy >= 50:
|
745 |
-
feedback_html += "<div style='margin-top: 15px; font-size: 18px;'><span>📚 Getting there! Focus on the highlighted sounds!</span></div>"
|
746 |
-
else:
|
747 |
-
feedback_html += "<div style='margin-top: 15px; font-size: 18px;'><span>💪 Keep practicing! Every attempt makes you better!</span></div>"
|
748 |
-
|
749 |
-
feedback_html += "</div></div>"
|
750 |
-
|
751 |
return feedback_html, accuracy
|
752 |
|
753 |
-
# ---------------- MAIN ---------------- #
|
|
|
754 |
@spaces.GPU
|
755 |
-
def
|
756 |
-
|
757 |
-
|
|
|
758 |
|
759 |
try:
|
760 |
-
# Extract
|
761 |
-
if "🔤" in
|
762 |
-
intended_sentence =
|
763 |
else:
|
764 |
-
intended_sentence =
|
765 |
|
766 |
-
#
|
767 |
-
actual_text =
|
768 |
|
769 |
if not actual_text.strip():
|
770 |
-
return
|
771 |
|
772 |
-
#
|
773 |
wer_val = jiwer.wer(intended_sentence, actual_text)
|
774 |
cer_val = jiwer.cer(intended_sentence, actual_text)
|
775 |
|
776 |
-
# Get
|
777 |
-
|
778 |
-
actual_roman = transliterate_to_natural_roman(actual_text, lang_choice)
|
779 |
|
780 |
-
# Create
|
781 |
-
feedback_html, accuracy =
|
782 |
|
783 |
-
return
|
784 |
-
actual_text,
|
785 |
-
actual_roman,
|
786 |
-
f"{wer_val:.1%}",
|
787 |
-
f"{cer_val:.1%}",
|
788 |
-
feedback_html
|
789 |
-
)
|
790 |
|
791 |
except Exception as e:
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
|
796 |
-
def
|
797 |
-
sentence
|
|
|
|
|
|
|
|
|
|
|
798 |
return sentence
|
799 |
|
800 |
# ---------------- UI ---------------- #
|
801 |
-
|
|
|
802 |
gr.Markdown("""
|
803 |
-
# 🎙️ AI Pronunciation Coach
|
804 |
-
### Practice English, Tamil & Malayalam with AI feedback
|
805 |
|
806 |
-
**
|
807 |
-
- ✨ **
|
808 |
-
- 🎯 **
|
809 |
-
- 📊 **
|
810 |
|
811 |
**How to use:**
|
812 |
1. Select your language
|
813 |
2. Generate a practice sentence
|
814 |
3. Record yourself reading it aloud
|
815 |
-
4. Get instant
|
816 |
""")
|
817 |
|
818 |
with gr.Row():
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
with gr.Column(scale=1):
|
826 |
-
gen_btn = gr.Button("🎲 Generate Practice Sentence", variant="primary")
|
827 |
|
828 |
intended_display = gr.Textbox(
|
829 |
-
label="📝 Practice Sentence
|
830 |
interactive=False,
|
831 |
placeholder="Click 'Generate Practice Sentence' to get started...",
|
832 |
lines=3
|
833 |
)
|
834 |
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
label="🎤 Record Your Pronunciation"
|
841 |
-
)
|
842 |
-
with gr.Column():
|
843 |
-
gr.Markdown("### ⚙️ Advanced Settings")
|
844 |
-
pass1_beam = gr.Slider(1, 10, value=5, step=1, label="Beam Size (accuracy vs speed)")
|
845 |
-
pass1_temp = gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="Temperature (creativity)")
|
846 |
|
847 |
analyze_btn = gr.Button("🔍 Analyze My Pronunciation", variant="primary", size="lg")
|
848 |
|
849 |
with gr.Row():
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
wer_out = gr.Textbox(label="📊 Word Error Rate", interactive=False)
|
855 |
-
cer_out = gr.Textbox(label="📈 Character Error Rate", interactive=False)
|
856 |
-
|
857 |
-
gr.Markdown("### 📋 Enhanced Detailed Analysis")
|
858 |
feedback_display = gr.HTML()
|
859 |
|
860 |
# Event handlers
|
861 |
gen_btn.click(
|
862 |
-
fn=
|
863 |
-
inputs=[lang_choice],
|
864 |
outputs=[intended_display]
|
865 |
)
|
866 |
|
867 |
analyze_btn.click(
|
868 |
-
fn=
|
869 |
-
inputs=[audio_input, lang_choice, intended_display
|
870 |
-
outputs=[
|
871 |
)
|
872 |
|
873 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
import random
|
3 |
import difflib
|
|
|
|
|
4 |
import jiwer
|
5 |
import torch
|
6 |
+
from transformers import (
|
7 |
+
WhisperForConditionalGeneration,
|
8 |
+
WhisperProcessor,
|
9 |
+
AutoModelForCausalLM,
|
10 |
+
AutoTokenizer
|
11 |
+
)
|
12 |
import spaces
|
13 |
import gc
|
14 |
|
15 |
# ---------------- CONFIG ---------------- #
|
16 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
|
|
|
18 |
MODEL_CONFIGS = {
|
19 |
"English": "openai/whisper-large-v2",
|
20 |
"Tamil": "vasista22/whisper-tamil-large-v2",
|
|
|
27 |
"Malayalam": "ml"
|
28 |
}
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
SENTENCE_BANK = {
|
31 |
"English": [
|
32 |
"The sun sets over the horizon.",
|
33 |
"Learning languages is fun.",
|
34 |
"I like to drink coffee in the morning.",
|
35 |
"Technology helps us communicate better.",
|
36 |
+
"Reading books expands our knowledge."
|
|
|
|
|
|
|
37 |
],
|
38 |
"Tamil": [
|
39 |
"இன்று நல்ல வானிலை உள்ளது.",
|
40 |
"நான் தமிழ் கற்றுக்கொண்டு இருக்கிறேன்.",
|
41 |
"எனக்கு புத்தகம் படிக்க விருப்பம்.",
|
42 |
"தமிழ் மொழி மிகவும் அழகானது.",
|
43 |
+
"அன்னை தமிழ் எங்கள் தாய்மொழி."
|
|
|
|
|
|
|
44 |
],
|
45 |
"Malayalam": [
|
46 |
"എനിക്ക് മലയാളം വളരെ ഇഷ്ടമാണ്.",
|
47 |
"ഇന്ന് മഴപെയ്യുന്നു.",
|
48 |
"ഞാൻ പുസ്തകം വായിക്കുന്നു.",
|
49 |
"കേരളം എന്റെ സ്വന്തം നാടാണ്.",
|
50 |
+
"സംഗീതം ജീവിതത്തിന്റെ ഭാഗമാണ്."
|
|
|
|
|
|
|
51 |
]
|
52 |
}
|
53 |
|
54 |
+
# ---------------- MODELS ---------------- #
|
55 |
+
current_whisper_model = {"language": None, "model": None, "processor": None}
|
56 |
+
qwen_model = {"model": None, "tokenizer": None}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
def load_whisper_model(language_choice):
|
59 |
+
"""Load Whisper model for the selected language"""
|
60 |
+
global current_whisper_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
if current_whisper_model["language"] == language_choice and current_whisper_model["model"] is not None:
|
63 |
+
return current_whisper_model["model"], current_whisper_model["processor"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
# Clear previous model
|
66 |
+
if current_whisper_model["model"] is not None:
|
67 |
+
del current_whisper_model["model"]
|
68 |
+
del current_whisper_model["processor"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
gc.collect()
|
70 |
if DEVICE == "cuda":
|
71 |
torch.cuda.empty_cache()
|
72 |
|
73 |
# Load new model
|
74 |
model_id = MODEL_CONFIGS[language_choice]
|
75 |
+
print(f"Loading Whisper model: {model_id}")
|
76 |
|
77 |
try:
|
78 |
model = WhisperForConditionalGeneration.from_pretrained(
|
79 |
+
model_id, torch_dtype=torch.float32
|
|
|
80 |
).to(DEVICE)
|
81 |
processor = WhisperProcessor.from_pretrained(model_id)
|
82 |
|
83 |
+
current_whisper_model = {
|
84 |
"language": language_choice,
|
85 |
"model": model,
|
86 |
"processor": processor
|
87 |
}
|
88 |
|
89 |
+
print(f"✓ Whisper model loaded successfully")
|
90 |
return model, processor
|
91 |
|
92 |
except Exception as e:
|
93 |
+
print(f"✗ Error loading Whisper model: {e}")
|
94 |
+
# Fallback to base model
|
|
|
95 |
model = WhisperForConditionalGeneration.from_pretrained(
|
96 |
+
"openai/whisper-base", torch_dtype=torch.float32
|
|
|
97 |
).to(DEVICE)
|
98 |
processor = WhisperProcessor.from_pretrained("openai/whisper-base")
|
99 |
|
100 |
+
current_whisper_model = {
|
101 |
"language": language_choice,
|
102 |
"model": model,
|
103 |
"processor": processor
|
104 |
}
|
|
|
105 |
return model, processor
|
106 |
|
107 |
+
def load_qwen_model():
|
108 |
+
"""Load Qwen2.5-1.5B-Instruct for transliteration"""
|
109 |
+
global qwen_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
if qwen_model["model"] is not None:
|
112 |
+
return qwen_model["model"], qwen_model["tokenizer"]
|
113 |
+
|
114 |
+
try:
|
115 |
+
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
|
116 |
+
print(f"Loading Qwen model: {model_name}")
|
117 |
+
|
118 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
119 |
+
model = AutoModelForCausalLM.from_pretrained(
|
120 |
+
model_name,
|
121 |
+
trust_remote_code=True,
|
122 |
+
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
123 |
+
device_map="auto" if DEVICE == "cuda" else None
|
124 |
+
)
|
125 |
+
|
126 |
+
if DEVICE == "cpu":
|
127 |
+
model = model.to(DEVICE)
|
128 |
+
|
129 |
+
model.eval()
|
130 |
+
|
131 |
+
qwen_model = {"model": model, "tokenizer": tokenizer}
|
132 |
+
print(f"✓ Qwen model loaded successfully")
|
133 |
+
return model, tokenizer
|
134 |
+
|
135 |
+
except Exception as e:
|
136 |
+
print(f"✗ Failed to load Qwen model: {e}")
|
137 |
+
return None, None
|
138 |
+
|
139 |
+
# ---------------- TRANSLITERATION ---------------- #
|
140 |
+
|
141 |
+
def transliterate_with_qwen(text, source_lang):
|
142 |
+
"""Use Qwen for natural transliteration"""
|
143 |
+
if source_lang == "English" or not text.strip():
|
144 |
+
return text
|
145 |
|
146 |
+
model, tokenizer = load_qwen_model()
|
147 |
+
if model is None or tokenizer is None:
|
148 |
+
return text # Return original if model fails
|
149 |
|
150 |
try:
|
151 |
+
# Create prompts
|
152 |
+
if source_lang == "Tamil":
|
153 |
+
system_prompt = "Convert Tamil text to natural Thanglish (how Tamil people type on phones). Only output the romanized text."
|
154 |
+
user_prompt = f"Tamil: {text}\nThanglish:"
|
155 |
+
else: # Malayalam
|
156 |
+
system_prompt = "Convert Malayalam text to natural Manglish (how Malayalam people type on phones). Only output the romanized text."
|
157 |
+
user_prompt = f"Malayalam: {text}\nManglish:"
|
158 |
+
|
159 |
+
# Format for Qwen
|
160 |
+
messages = [
|
161 |
+
{"role": "system", "content": system_prompt},
|
162 |
+
{"role": "user", "content": user_prompt}
|
163 |
+
]
|
164 |
+
|
165 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
166 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
167 |
+
inputs = inputs.to(DEVICE)
|
168 |
+
|
169 |
+
# Generate
|
170 |
+
with torch.no_grad():
|
171 |
+
outputs = model.generate(
|
172 |
+
**inputs,
|
173 |
+
max_new_tokens=50,
|
174 |
+
temperature=0.1,
|
175 |
+
do_sample=True,
|
176 |
+
pad_token_id=tokenizer.eos_token_id
|
177 |
+
)
|
178 |
+
|
179 |
+
# Extract response
|
180 |
+
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
181 |
+
response = full_response[len(prompt):].strip()
|
182 |
+
|
183 |
+
# Clean response
|
184 |
+
response = response.split('\n')[0].strip() # Take first line only
|
185 |
+
return response if response else text
|
186 |
+
|
187 |
except Exception as e:
|
188 |
+
print(f"Qwen transliteration error: {e}")
|
189 |
return text
|
190 |
|
191 |
+
# ---------------- SPEECH RECOGNITION ---------------- #
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
@spaces.GPU
|
194 |
+
def transcribe_audio(audio_path, language_choice):
|
195 |
+
"""Transcribe audio using Whisper"""
|
196 |
+
model, processor = load_whisper_model(language_choice)
|
197 |
lang_code = LANG_CODES[language_choice]
|
198 |
|
199 |
+
# Load audio
|
200 |
import librosa
|
201 |
audio, sr = librosa.load(audio_path, sr=16000)
|
202 |
|
203 |
+
# Process audio
|
204 |
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
|
205 |
+
input_features = input_features.to(DEVICE, dtype=next(model.parameters()).dtype)
|
206 |
|
207 |
+
# Generate transcription
|
|
|
|
|
|
|
|
|
208 |
with torch.no_grad():
|
209 |
try:
|
|
|
210 |
forced_decoder_ids = processor.get_decoder_prompt_ids(language=lang_code, task="transcribe")
|
211 |
predicted_ids = model.generate(
|
212 |
input_features,
|
213 |
forced_decoder_ids=forced_decoder_ids,
|
214 |
max_length=448,
|
215 |
+
num_beams=5,
|
216 |
+
temperature=0.0
|
|
|
217 |
)
|
218 |
+
except:
|
|
|
|
|
219 |
predicted_ids = model.generate(
|
220 |
input_features,
|
221 |
max_length=448,
|
222 |
+
num_beams=5,
|
223 |
+
temperature=0.0
|
|
|
224 |
)
|
225 |
|
|
|
226 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
227 |
return transcription.strip()
|
228 |
|
229 |
+
# ---------------- FEEDBACK SYSTEM ---------------- #
|
|
|
|
|
|
|
|
|
230 |
|
231 |
+
def create_feedback(intended, actual, lang_choice):
|
232 |
+
"""Create simple feedback comparison"""
|
233 |
+
# Get transliterations
|
234 |
+
intended_roman = transliterate_with_qwen(intended, lang_choice)
|
235 |
+
actual_roman = transliterate_with_qwen(actual, lang_choice)
|
236 |
|
237 |
+
# Calculate accuracy
|
|
|
|
|
|
|
|
|
238 |
intended_words = intended.strip().split()
|
239 |
actual_words = actual.strip().split()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
+
# Simple word-level accuracy
|
242 |
sm = difflib.SequenceMatcher(None, intended_words, actual_words)
|
243 |
+
accuracy = sm.ratio() * 100
|
244 |
|
245 |
+
# Create feedback HTML
|
246 |
+
feedback_html = f"""
|
247 |
+
<div style='font-family: Arial, sans-serif; padding: 20px;'>
|
248 |
+
<h3 style='color: #2c3e50; text-align: center;'>📊 Pronunciation Analysis</h3>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
+
<table style='width: 100%; border-collapse: collapse; margin: 20px 0;'>
|
251 |
+
<tr style='background: #f8f9fa;'>
|
252 |
+
<td style='padding: 15px; font-weight: bold; border: 1px solid #ddd;'>Target</td>
|
253 |
+
<td style='padding: 15px; border: 1px solid #ddd; font-family: monospace;'>{intended}</td>
|
254 |
+
</tr>
|
255 |
+
<tr style='background: #f8f9fa;'>
|
256 |
+
<td style='padding: 15px; font-weight: bold; border: 1px solid #ddd;'>Romanized</td>
|
257 |
+
<td style='padding: 15px; border: 1px solid #ddd; font-family: monospace; color: #666;'>{intended_roman}</td>
|
258 |
+
</tr>
|
259 |
+
<tr>
|
260 |
+
<td style='padding: 15px; font-weight: bold; border: 1px solid #ddd;'>You Said</td>
|
261 |
+
<td style='padding: 15px; border: 1px solid #ddd; font-family: monospace;'>{actual}</td>
|
262 |
+
</tr>
|
263 |
+
<tr>
|
264 |
+
<td style='padding: 15px; font-weight: bold; border: 1px solid #ddd;'>Your Romanized</td>
|
265 |
+
<td style='padding: 15px; border: 1px solid #ddd; font-family: monospace; color: #666;'>{actual_roman}</td>
|
266 |
+
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
</table>
|
268 |
+
|
269 |
+
<div style='text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 10px;'>
|
270 |
+
<h4 style='margin: 0 0 10px 0;'>Accuracy Score</h4>
|
271 |
+
<div style='font-size: 36px; font-weight: bold;'>{accuracy:.0f}%</div>
|
272 |
+
<div style='margin-top: 10px;'>
|
273 |
+
{'🎉 Excellent!' if accuracy >= 90 else '👍 Good job!' if accuracy >= 70 else '📚 Keep practicing!'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
</div>
|
275 |
</div>
|
276 |
+
</div>
|
|
|
|
|
277 |
"""
|
278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
return feedback_html, accuracy
|
280 |
|
281 |
+
# ---------------- MAIN FUNCTION ---------------- #
|
282 |
+
|
283 |
@spaces.GPU
|
284 |
+
def analyze_pronunciation(audio, lang_choice, intended_text):
|
285 |
+
"""Main function to analyze pronunciation"""
|
286 |
+
if audio is None or not intended_text.strip():
|
287 |
+
return "⚠️ Please record audio and generate a sentence first.", "", "", ""
|
288 |
|
289 |
try:
|
290 |
+
# Extract original sentence (remove romanization if present)
|
291 |
+
if "🔤" in intended_text:
|
292 |
+
intended_sentence = intended_text.split("🔤")[0].strip()
|
293 |
else:
|
294 |
+
intended_sentence = intended_text.strip()
|
295 |
|
296 |
+
# Transcribe audio
|
297 |
+
actual_text = transcribe_audio(audio, lang_choice)
|
298 |
|
299 |
if not actual_text.strip():
|
300 |
+
return "⚠️ No speech detected. Please try recording again.", "", "", ""
|
301 |
|
302 |
+
# Calculate metrics
|
303 |
wer_val = jiwer.wer(intended_sentence, actual_text)
|
304 |
cer_val = jiwer.cer(intended_sentence, actual_text)
|
305 |
|
306 |
+
# Get romanizations
|
307 |
+
actual_roman = transliterate_with_qwen(actual_text, lang_choice)
|
|
|
308 |
|
309 |
+
# Create feedback
|
310 |
+
feedback_html, accuracy = create_feedback(intended_sentence, actual_text, lang_choice)
|
311 |
|
312 |
+
return actual_text, actual_roman, f"{wer_val:.1%}", feedback_html
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
except Exception as e:
|
315 |
+
return f"❌ Error: {str(e)}", "", "", ""
|
316 |
+
|
317 |
+
# ---------------- HELPERS ---------------- #
|
318 |
|
319 |
+
def get_random_sentence_with_transliteration(language_choice):
|
320 |
+
"""Get a random sentence with its transliteration"""
|
321 |
+
sentence = random.choice(SENTENCE_BANK[language_choice])
|
322 |
+
if language_choice in ["Tamil", "Malayalam"]:
|
323 |
+
transliteration = transliterate_with_qwen(sentence, language_choice)
|
324 |
+
combined = f"{sentence}\n\n🔤 {transliteration}"
|
325 |
+
return combined
|
326 |
return sentence
|
327 |
|
328 |
# ---------------- UI ---------------- #
|
329 |
+
|
330 |
+
with gr.Blocks(title="AI Pronunciation Coach", theme=gr.themes.Soft()) as demo:
|
331 |
gr.Markdown("""
|
332 |
+
# 🎙️ AI Pronunciation Coach
|
333 |
+
### Practice English, Tamil & Malayalam with AI feedback powered by Qwen2.5
|
334 |
|
335 |
+
**Features:**
|
336 |
+
- ✨ **Smart Transliteration**: Natural Thanglish/Manglish using Qwen2.5-1.5B-Instruct
|
337 |
+
- 🎯 **Accurate Recognition**: Language-specific Whisper models
|
338 |
+
- 📊 **Instant Feedback**: Real-time pronunciation analysis
|
339 |
|
340 |
**How to use:**
|
341 |
1. Select your language
|
342 |
2. Generate a practice sentence
|
343 |
3. Record yourself reading it aloud
|
344 |
+
4. Get instant feedback!
|
345 |
""")
|
346 |
|
347 |
with gr.Row():
|
348 |
+
lang_choice = gr.Dropdown(
|
349 |
+
choices=list(LANG_CODES.keys()),
|
350 |
+
value="Malayalam",
|
351 |
+
label="🌍 Choose Language"
|
352 |
+
)
|
353 |
+
gen_btn = gr.Button("🎲 Generate Practice Sentence", variant="primary")
|
|
|
|
|
354 |
|
355 |
intended_display = gr.Textbox(
|
356 |
+
label="📝 Practice Sentence",
|
357 |
interactive=False,
|
358 |
placeholder="Click 'Generate Practice Sentence' to get started...",
|
359 |
lines=3
|
360 |
)
|
361 |
|
362 |
+
audio_input = gr.Audio(
|
363 |
+
sources=["microphone"],
|
364 |
+
type="filepath",
|
365 |
+
label="🎤 Record Your Pronunciation"
|
366 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
|
368 |
analyze_btn = gr.Button("🔍 Analyze My Pronunciation", variant="primary", size="lg")
|
369 |
|
370 |
with gr.Row():
|
371 |
+
actual_out = gr.Textbox(label="🗣️ What You Said", interactive=False)
|
372 |
+
actual_roman_out = gr.Textbox(label="🔤 Your Pronunciation (Romanized)", interactive=False)
|
373 |
+
wer_out = gr.Textbox(label="📊 Word Error Rate", interactive=False)
|
374 |
+
|
|
|
|
|
|
|
|
|
375 |
feedback_display = gr.HTML()
|
376 |
|
377 |
# Event handlers
|
378 |
gen_btn.click(
|
379 |
+
fn=get_random_sentence_with_transliteration,
|
380 |
+
inputs=[lang_choice],
|
381 |
outputs=[intended_display]
|
382 |
)
|
383 |
|
384 |
analyze_btn.click(
|
385 |
+
fn=analyze_pronunciation,
|
386 |
+
inputs=[audio_input, lang_choice, intended_display],
|
387 |
+
outputs=[actual_out, actual_roman_out, wer_out, feedback_display]
|
388 |
)
|
389 |
|
390 |
if __name__ == "__main__":
|