Spaces:
Sleeping
Sleeping
Commit
·
3e1059d
1
Parent(s):
9cb35d1
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from langchain.vectorstores import Chroma
|
| 3 |
+
docsearch = Chroma.from_texts(texts, embeddings,persist_directory=persist_directory)
|
| 4 |
+
def answer(question):
|
| 5 |
+
out=chain.run(question)
|
| 6 |
+
return out
|
| 7 |
+
demo = gr.Interface(fn=answer, inputs='text',outputs='text',examples=[['What is the capital of India ?']])
|
| 8 |
+
demo.launch()
|
| 9 |
+
from langchain.docstore.document import Document
|
| 10 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 11 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 12 |
+
embeddings = HuggingFaceEmbeddings()
|
| 13 |
+
with open('Gita full.txt') as f:
|
| 14 |
+
gita = f.read()
|
| 15 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
| 16 |
+
texts = text_splitter.split_text(gita)
|
| 17 |
+
docsearch = Chroma.from_texts(texts, embeddings)
|
| 18 |
+
def answer(query):
|
| 19 |
+
docs = docsearch.similarity_search(query)
|
| 20 |
+
out=docs[0].page_content
|
| 21 |
+
return out
|
| 22 |
+
demo = gr.Interface(fn=answer, inputs='text',outputs='text',examples=[['song celestial']])
|
| 23 |
+
demo.launch()
|